Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sterols and oxysterols in immune cell function

Abstract

Intermediates in the cholesterol-biosynthetic pathway and oxysterol derivatives of cholesterol regulate diverse cellular processes. Recent studies have expanded the appreciation of their roles in controlling the functions of cells of the innate and adaptive immune systems. Here we review recent literature reporting on the biological functions of sterol intermediates and oxysterols, acting through transcription factors such as the liver X receptors (LXRs), sterol regulatory element–binding proteins (SREBPs) and the G protein–coupled receptor EBI2, in regulating the differentiation and population expansion of cells of the innate and adaptive immune systems, their responses to inflammatory mediators, their effects on the phagocytic functions of macrophages and their effects on antiviral activities and the migration of immune cells. Such findings have raised many new questions about the production of endogenous bioactive sterols and oxysterols and their mechanisms of action in the immune system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coordinated regulation of cellular cholesterol homeostasis by SREBPs and LXRs.
Figure 2: Biologically active sterols and oxysterols.
Figure 3: Roles of oxysterols and biosynthetic intermediates of sterols in regulating the function of cells of the immune system.

Similar content being viewed by others

References

  1. Brown, M.S. & Goldstein, J.L. Cholesterol feedback: from Schoenheimer's bottle to Scap's MELADL. J. Lipid Res. 50 (suppl.), S15–S27 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Tontonoz, P. & Mangelsdorf, D.J. Liver X receptor signaling pathways in cardiovascular disease. Mol. Endocrinol. 17, 985–993 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Bensinger, S.J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Janowski, B.A. et al. Structural requirements of ligands for the oxysterol liver X receptors LXRα and LXRβ. Proc. Natl. Acad. Sci. USA 96, 266–271 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Radhakrishnan, A., Ikeda, Y., Kwon, H.J., Brown, M.S. & Goldstein, J.L. Sterol-regulated transport of SREBPs from endoplasmic reticulum to Golgi: oxysterols block transport by binding to Insig. Proc. Natl. Acad. Sci. USA 104, 6511–6518 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A-Gonzalez, N. et al. Apoptotic cells promote their own clearance and immune tolerance through activation of the nuclear receptor LXR. Immunity 31, 245–258 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chow, O.A. et al. Statins enhance formation of phagocyte extracellular traps. Cell Host Microbe 8, 445–454 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blanc, M. et al. The transcription factor STAT-1 couples macrophage synthesis of 25-hydroxycholesterol to the interferon antiviral response. Immunity 38, 106–118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, S.Y. et al. Interferon-inducible cholesterol-25-hydroxylase broadly inhibits viral entry by production of 25-hydroxycholesterol. Immunity 38, 92–105 (2013).

    Article  PubMed  CAS  Google Scholar 

  10. Bauman, D.R. et al. 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc. Natl. Acad. Sci. USA 106, 16764–16769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hannedouche, S. et al. Oxysterols direct immune cell migration via EBI2. Nature 475, 524–527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, C. et al. Oxysterols direct B-cell migration through EBI2. Nature 475, 519–523 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Mangelsdorf, D.J. & Evans, R.M. The RXR heterodimers and orphan receptors. Cell 83, 841–850 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Sacchetti, P. et al. Liver X receptors and oxysterols promote ventral midbrain neurogenesis in vivo and in human embryonic stem cells. Cell Stem Cell 5, 409–419 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Hong, C. & Tontonoz, P. Coordination of inflammation and metabolism by PPAR and LXR nuclear receptors. Curr. Opin. Genet. Dev. 18, 461–467 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wagner, B.L. et al. Promoter-specific roles for liver X receptor/corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression. Mol. Cell Biol. 23, 5780–5789 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Glass, C.K. & Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Ghisletti, S. et al. Parallel SUMOylation-dependent pathways mediate gene- and signal-specific transrepression by LXRs and PPARgamma. Mol. Cell 25, 57–70 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Collins, J.L. et al. Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J. Med. Chem. 45, 1963–1966 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Joseph, S.B., Castrillo, A., Laffitte, B.A., Mangelsdorf, D.J. & Tontonoz, P. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9, 213–219 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Venkateswaran, A. et al. Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR alpha. Proc. Natl. Acad. Sci. USA 97, 12097–12102 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Laffitte, B.A. et al. LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc. Natl. Acad. Sci. USA 98, 507–512 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kennedy, M.A. et al. Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J. Biol. Chem. 276, 39438–39447 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Spann, N.J. et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 151, 138–152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, Y. et al. Liver X receptor agonist TO-901317 upregulates SCD1 expression in renal proximal straight tubule. Am. J. Physiol. Renal Physiol. 290, F1065–F1073 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Shen, Q. et al. Liver X receptor-retinoid X receptor (LXR-RXR) heterodimer cistrome reveals coordination of LXR and AP1 signaling in keratinocytes. J. Biol. Chem. 286, 14554–14563 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qin, Y., Dalen, K.T., Gustafsson, J.A. & Nebb, H.I. Regulation of hepatic fatty acid elongase 5 by LXRα-SREBP-1c. Biochim. Biophys. Acta 1791, 140–147 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Repa, J.J. et al. Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 14, 2819–2830 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang, C. et al. Sterol intermediates from cholesterol biosynthetic pathway as liver X receptor ligands. J. Biol. Chem. 281, 27816–27826 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, W., Chen, G., Head, D.L., Mangelsdorf, D.J. & Russell, D.W. Enzymatic reduction of oxysterols impairs LXR signaling in cultured cells and the livers of mice. Cell Metab. 5, 73–79 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Glass, C.K. & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 10, 365–376 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Ogawa, S. et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707–721 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rothlin, C.V., Ghosh, S., Zuniga, E.I., Oldstone, M.B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Oh, D.Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jakobsson, T., Treuter, E., Gustafsson, J.A. & Steffensen, K.R. Liver X receptor biology and pharmacology: new pathways, challenges and opportunities. Trends Pharmacol. Sci. 33, 394–404 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Cui, G. et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J. Clin. Invest. 121, 658–670 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zelcer, N. et al. Attenuation of neuroinflammation and Alzheimer's disease pathology by liver x receptors. Proc. Natl. Acad. Sci. USA 104, 10601–10606 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dai, Y.B., Tan, X.J., Wu, W.F., Warner, M. & Gustafsson, J.A. Liver X receptor β protects dopaminergic neurons in a mouse model of Parkinson disease. Proc. Natl. Acad. Sci. USA 109, 13112–13117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Castrillo, A. et al. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol. Cell 12, 805–816 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Fontaine, C. et al. Liver X receptor activation potentiates the lipopolysaccharide response in human macrophages. Circ. Res. 101, 40–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Im, S.S. et al. Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab. 13, 540–549 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Novelli, G. & D'Apice, M.R. Protein farnesylation and disease. J. Inherit. Metab. Dis. 35, 917–926 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Endo, A., Kuroda, M. & Tanzawa, K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 72, 323–326 (1976).

    Article  CAS  PubMed  Google Scholar 

  44. Goldstein, J.L. & Brown, M.S. The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 29, 431–438 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pahan, K., Sheikh, F.G., Namboodiri, A.M. & Singh, I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J. Clin. Invest. 100, 2671–2679 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Niessner, A. et al. Simvastatin suppresses endotoxin-induced upregulation of toll-like receptors 4 and 2 in vivo. Atherosclerosis 189, 408–413 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Liao, J.K. & Laufs, U. Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 45, 89–118 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kruger, P., Fitzsimmons, K., Cook, D., Jones, M. & Nimmo, G. Statin therapy is associated with fewer deaths in patients with bacteraemia. Intensive Care Med. 32, 75–79 (2006).

    Article  PubMed  Google Scholar 

  49. Thomsen, R.W. et al. Preadmission use of statins and outcomes after hospitalization with pneumonia: population-based cohort study of 29,900 patients. Arch. Intern. Med. 168, 2081–2087 (2008).

    Article  PubMed  Google Scholar 

  50. Liappis, A.P., Kan, V.L., Rochester, C.G. & Simon, G.L. The effect of statins on mortality in patients with bacteremia. Clin. Infect. Dis. 33, 1352–1357 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Ando, H., Takamura, T., Ota, T., Nagai, Y. & Kobayashi, K. Cerivastatin improves survival of mice with lipopolysaccharide-induced sepsis. J. Pharmacol. Exp. Ther. 294, 1043–1046 (2000).

    CAS  PubMed  Google Scholar 

  52. Chaudhry, M.Z., Wang, J.H., Blankson, S. & Redmond, H.P. Statin (cerivastatin) protects mice against sepsis-related death via reduced proinflammatory cytokines and enhanced bacterial clearance. Surg. Infect. (Larchmt) 9, 183–194 (2008).

    Article  Google Scholar 

  53. Liao, Y.H. et al. HMG-CoA reductase inhibitors activate caspase-1 in human monocytes depending on ATP release and P2X7 activation. J. Leukoc. Biol. 93, 289–299 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Montero, M.T. et al. Hydroxymethylglutaryl-coenzyme A reductase inhibition stimulates caspase-1 activity and Th1-cytokine release in peripheral blood mononuclear cells. Atherosclerosis 153, 303–313 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Xu, J.F. et al. Statins and pulmonary fibrosis: the potential role of NLRP3 inflammasome activation. Am. J. Respir. Crit. Care Med. 185, 547–556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Frenkel, J. et al. Lack of isoprenoid products raises ex vivo interleukin-1beta secretion in hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum. 46, 2794–2803 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Montero, M.T., Matilla, J., Gomez-Mampaso, E. & Lasuncion, M.A. Geranylgeraniol regulates negatively caspase-1 autoprocessing: implication in the Th1 response against Mycobacterium tuberculosis. J. Immunol. 173, 4936–4944 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Jeon, T.I. & Osborne, T.F. SREBPs: metabolic integrators in physiology and metabolism. Trends in endocrinology and metabolism. TEM 23, 65–72 (2012).

    CAS  PubMed  Google Scholar 

  60. Liang, G. et al. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. J. Biol. Chem. 277, 9520–9528 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Hong, C. et al. Coordinate regulation of neutrophil homeostasis by liver X receptors in mice. J. Clin. Invest. 122, 337–347 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Joseph, S.B. et al. LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119, 299–309 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Valledor, A.F. et al. Activation of liver X receptors and retinoid X receptors prevents bacterial-induced macrophage apoptosis. Proc. Natl. Acad. Sci. USA 101, 17813–17818 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yvan-Charvet, L. et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science 328, 1689–1693 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Westerterp, M. et al. Regulation of hematopoietic stem and progenitor cell mobilization by cholesterol efflux pathways. Cell Stem Cell 11, 195–206 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chukkapalli, V., Heaton, N.S. & Randall, G. Lipids at the interface of virus-host interactions. Curr. Opin. Microbiol. 15, 512–518 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moog, C., Aubertin, A.M., Kirn, A. & Luu, B. Oxysterols, but not cholesterol, inhibit human immunodeficiency virus replication in vitro. Antivir. Chem. Chemother. 9, 491–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  68. Pezacki, J.P. et al. Transcriptional profiling of the effects of 25-hydroxycholesterol on human hepatocyte metabolism and the antiviral state it conveys against the hepatitis C virus. BMC Chem. Biol. 9, 2 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Zeng, J., Wu, Y., Liao, Q., Li, L. & Chen, X. Liver X receptors agonists impede hepatitis C virus infection in an Idol-dependent manner. Antiviral Res. 95, 245–256 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Dubrovsky, L. et al. Liver X receptor agonist inhibits HIV-1 replication and prevents HIV-induced reduction of plasma HDL in humanized mouse model of HIV infection. Biochem. Biophys. Res. Commun. 419, 95–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Morrow, M.P. et al. Stimulation of the liver X receptor pathway inhibits HIV-1 replication via induction of ATP-binding cassette transporter A1. Mol. Pharmacol. 78, 215–225 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Korf, H. et al. Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. J. Clin. Invest. 119, 1626–1637 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bruhn, K.W. et al. LXR deficiency confers increased protection against visceral Leishmania infection in mice. PLoS Negl. Trop. Dis. 4, e886 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Park, K. & Scott, A.L. Cholesterol 25-hydroxylase production by dendritic cells and macrophages is regulated by type I interferons. J. Leukoc. Biol. 88, 1081–1087 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Diczfalusy, U. et al. Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide. J. Lipid Res. 50, 2258–2264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Blanc, M. et al. Host defense against viral infection involves interferon mediated down-regulation of sterol biosynthesis. PLoS Biol. 9, e1000598 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pereira, J.P., Kelly, L.M., Xu, Y. & Cyster, J.G. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460, 1122–1126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gatto, D., Paus, D., Basten, A., Mackay, C.R. & Brink, R. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity 31, 259–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Yi, T. et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity 37, 535–548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Conlon, P., Oksenberg, J.R., Zhang, J. & Steinman, L. The immunobiology of multiple sclerosis: an autoimmune disease of the central nervous system. Neurobiol. Dis. 6, 149–166 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Wang, L. et al. Liver X receptors in the central nervous system: from lipid homeostasis to neuronal degeneration. Proc. Natl. Acad. Sci. USA 99, 13878–13883 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hindinger, C. et al. Liver X receptor activation decreases the severity of experimental autoimmune encephalomyelitis. J. Neurosci. Res. 84, 1225–1234 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Teunissen, C.E. et al. Decreased levels of the brain specific 24S-hydroxycholesterol and cholesterol precursors in serum of multiple sclerosis patients. Neurosci. Lett. 347, 159–162 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Kang, J. & Rivest, S. Lipid metabolism and neuroinflammation in Alzheimer's disease: a role for liver X receptors. Endocr. Rev. 33, 715–746 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Leoni, V. & Caccia, C. Oxysterols as biomarkers in neurodegenerative diseases. Chem. Phys. Lipids 164, 515–524 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Walcher, D. et al. LXR activation reduces proinflammatory cytokine expression in human CD4-positive lymphocytes. Arterioscler. Thromb. Vasc. Biol. 26, 1022–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Nagy, L., Szanto, A., Szatmari, I. & Szeles, L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol. Rev. 92, 739–789 (2012).

    Article  CAS  PubMed  Google Scholar 

  88. Hanley, T.M., Blay Puryear, W., Gummuluru, S. & Viglianti, G.A. PPARγ and LXR signaling inhibit dendritic cell-mediated HIV-1 capture and trans-infection. PLoS Pathog. 6, e1000981 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Geyeregger, R. et al. Liver X receptors regulate dendritic cell phenotype and function through blocked induction of the actin-bundling protein fascin. Blood 109, 4288–4295 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Rabinovich, G.A., Gabrilovich, D. & Sotomayor, E.M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25, 267–296 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Villablanca, E.J. et al. Tumor-mediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nat. Med. 16, 98–105 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Feig, J.E. et al. LXR promotes the maximal egress of monocyte-derived cells from mouse aortic plaques during atherosclerosis regression. J. Clin. Invest. 120, 4415–4424 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gatto, D. et al. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat. Immunol. 14, 446–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  94. Bard, M. et al. Cloning and characterization of ERG25, the Saccharomyces cerevisiae gene encoding C-4 sterol methyl oxidase. Proc. Natl. Acad. Sci. USA 93, 186–190 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Seok, J. et al. Genomic responses in mouse models poorly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 110, 3507–3512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Carlin for critical reading of the manuscript, and L. Bautista for assistance with manuscript preparation. Supported by the US National Institutes of Health (GM069338, DK091183 and DK074868 to C.K.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K Glass.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spann, N., Glass, C. Sterols and oxysterols in immune cell function. Nat Immunol 14, 893–900 (2013). https://doi.org/10.1038/ni.2681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2681

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing