Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens

Abstract

Defense against attaching-and-effacing bacteria requires the sequential generation of interleukin 23 (IL-23) and IL-22 to induce protective mucosal responses. Although CD4+ and NKp46+ innate lymphoid cells (ILCs) are the critical source of IL-22 during infection, the precise source of IL-23 is unclear. We used genetic techniques to deplete mice of specific subsets of classical dendritic cells (cDCs) and analyzed immunity to the attaching-and-effacing pathogen Citrobacter rodentium. We found that the signaling receptor Notch2 controlled the terminal stage of cDC differentiation. Notch2-dependent intestinal CD11b+ cDCs were an obligate source of IL-23 required for survival after infection with C. rodentium, but CD103+ cDCs dependent on the transcription factor Batf3 were not. Our results demonstrate a nonredundant function for CD11b+ cDCs in the response to pathogens in vivo.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Zbtb46-GFP identifies intestinal cDC populations.
Figure 2: Zbtb46+ cDCs are essential for survival after infection with C. rodentium.
Figure 3: Canonical Notch2 signaling is required for the development of splenic and intestinal CD11b+ cDCs.
Figure 4: Notch2 controls the terminal differentiation of CD11b+ and DEC-205+ cDCs.
Figure 5: LTβR signaling mediates the homeostatic population expansion of Notch2-dependent cDCs.
Figure 6: Notch2-dependent CD11b+ cDCs are essential for host defense against infection with C. rodentium.
Figure 7: Notch2-dependent cDCs are dispensable for colonic wound repair.
Figure 8: Notch2-dependent CD11b+ cDCs regulate IL-23-dependent antimicrobial responses to C. rodentium.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. 1

    Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    CAS  Google Scholar 

  2. 2

    Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Spits, H. & Di Santo, J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2011).

    CAS  Google Scholar 

  4. 4

    Colonna, M. Interleukin-22-producing natural killer cells and lymphoid tissue inducer-like cells in mucosal immunity. Immunity 31, 15–23 (2009).

    CAS  PubMed  Google Scholar 

  5. 5

    Sonnenberg, G.F. et al. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34, 122–134 (2011).

    CAS  Google Scholar 

  6. 6

    Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    CAS  PubMed  Google Scholar 

  7. 7

    Mundy, R. et al. Citrobacter rodentium of mice and man. Cell. Microbiol. 7, 1697–1706 (2005).

    CAS  PubMed  Google Scholar 

  8. 8

    Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    CAS  PubMed  Google Scholar 

  9. 9

    Eberl, G. et al. An essential function for the nuclear receptor RORγ(t) in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Sanos, S.L. et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009).

    CAS  PubMed  Google Scholar 

  11. 11

    Tumanov, A.V. et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 10, 44–53 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Manta, C. et al. CX3CR1+ macrophages support IL-22 production by innate lymphoid cells during infection with Citrobacter rodentium. Mucosal Immunol. 6, 177–188 (2012).

    PubMed  PubMed Central  Google Scholar 

  13. 13

    Kinnebrew, M.A. et al. Interleukin 23 production by intestinal CD103+CD11b+ dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36, 276–287 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Bennett, C.L. & Clausen, B.E. DC ablation in mice: promises, pitfalls, and challenges. Trends Immunol. 28, 525–531 (2007).

    CAS  PubMed  Google Scholar 

  15. 15

    Meredith, M.M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209, 1153–1165 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Satpathy, A.T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Lewis, K.L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780–791 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Swiecki, M. et al. Plasmacytoid dendritic cell ablation impacts early interferon responses and antiviral NK and CD8+ T cell accrual. Immunity 33, 955–966 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Hashimoto, D., Miller, J. & Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 35, 323–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Torti, N. et al. Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur. J. Immunol. 41, 2612–2618 (2011).

    CAS  PubMed  Google Scholar 

  22. 22

    Mashayekhi, M. et al. CD8a+ dendritic cells are the critical source of interleukin-12 that controls acute infection by Toxoplasma gondii tachyzoites. Immunity 35, 249–259 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Cervantes-Barragan, L. et al. Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proc. Natl. Acad. Sci. USA 109, 3012–3017 (2012).

    CAS  PubMed  Google Scholar 

  24. 24

    Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    CAS  PubMed  Google Scholar 

  26. 26

    Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    CAS  Google Scholar 

  27. 27

    Jakubzick, C. et al. Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J. Exp. Med. 205, 2839–2850 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Randolph, G.J., Ochando, J. & Partida-Sanchez, S. Migration of dendritic cell subsets and their precursors. Annu. Rev. Immunol. 26, 293–316 (2008).

    CAS  PubMed  Google Scholar 

  29. 29

    McKenna, H.J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489–3497 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Boring, L. et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C–C chemokine receptor 2 knockout mice. J. Clin. Invest. 100, 2552–2561 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Zigmond, E. et al. Ly6C hi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37, 1076–1090 (2012).

    CAS  PubMed  Google Scholar 

  32. 32

    Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107–111 (2007).

    CAS  PubMed  Google Scholar 

  33. 33

    Radtke, F., Fasnacht, N. & MacDonald, H.R. Notch signaling in the immune system. Immunity 32, 14–27 (2010).

    CAS  PubMed  Google Scholar 

  34. 34

    Edelson, B.T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207, 823–836 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    McDonald, K.G. et al. Dendritic cells produce CXCL13 and participate in the development of murine small intestine lymphoid tissues. Am. J. Pathol. 176, 2367–2377 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Caton, M.L., Smith-Raska, M.R. & Reizis, B. Notch-RBP-J signaling controls the homeostasis of CD8 dendritic cells in the spleen. J. Exp. Med. 204, 1653–1664 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Waskow, C. et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9, 676–683 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Kabashima, K. et al. Intrinsic lymphotoxin-β receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity 22, 439–450 (2005).

    CAS  PubMed  Google Scholar 

  39. 39

    Summers deLuca, L. & Gommerman, J.L. Fine-tuning of dendritic cell biology by the TNF superfamily. Nat. Rev. Immunol. 12, 339–351 (2012).

    PubMed  Google Scholar 

  40. 40

    Fütterer, A. et al. The lymphotoxin β receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70 (1998).

    PubMed  Google Scholar 

  41. 41

    Tussiwand, R. et al. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490, 502–507 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Bajaña, S. et al. IRF4 promotes cutaneous dendritic cell migration to lymph nodes during homeostasis and inflammation. J. Immunol. 189, 3368–3377 (2012).

    PubMed  PubMed Central  Google Scholar 

  43. 43

    Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 7, 773–782 (2006).

    CAS  PubMed  Google Scholar 

  44. 44

    Manieri, N.A. et al. Igf2bp1 is required for full induction of Ptgs2 mRNA in colonic mesenchymal stem cells in mice. Gastroenterology 143, 110–121 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Brown, S.L. et al. Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury. J. Clin. Invest. 117, 258–269 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Satpathy, A.T. et al. Re(de)fining the dendritic cell lineage. Nat. Immunol. 13, 1145–1154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Possot, C. et al. Notch signaling is necessary for adult, but not fetal, development of RORγt+ innate lymphoid cells. Nat. Immunol. 12, 949–958 (2011).

    CAS  Google Scholar 

  48. 48

    Lee, J.S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2012).

    CAS  Google Scholar 

  49. 49

    Ota, N. et al. IL-22 bridges the lymphotoxin pathway with the maintenance of colonic lymphoid structures during infection with Citrobacter rodentium. Nat. Immunol. 12, 941–948 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Wang, Y. et al. Lymphotoxin beta receptor signaling in intestinal epithelial cells orchestrates innate immune responses against mucosal bacterial infection. Immunity 32, 403–413 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. 51

    Kim, Y.G. et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 34, 769–780 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Rivollier, A. et al. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209, 139–155 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Basu, R. et al. Th22 cells are an important source of IL-22 for host protection against enteropathogenic bacteria. Immunity 37, 1061–1075 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Steinman, R.M. Decisions about dendritic cells: past, present, and future. Annu. Rev. Immunol. 30, 1–22 (2011).

    PubMed  Google Scholar 

  55. 55

    Heng, T.S. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    CAS  Google Scholar 

  56. 56

    Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol. 14, 637–645 (2002).

    CAS  PubMed  Google Scholar 

  57. 57

    Yu, H. et al. APP processing and synaptic plasticity in presenilin-1 conditional knockout mice. Neuron 31, 713–726 (2001).

    CAS  PubMed  Google Scholar 

  58. 58

    Yin, L. et al. Defective lymphotoxin-beta receptor-induced NF-kappaB transcriptional activity in NIK-deficient mice. Science 291, 2162–2165 (2001).

    CAS  Google Scholar 

  59. 59

    Keskintepe, L. et al. Derivation and comparison of C57BL/6 embryonic stem cells to a widely used 129 embryonic stem cell line. Transgenic Res. 16, 751–758 (2007).

    CAS  PubMed  Google Scholar 

  60. 60

    Schwenk, F., Baron, U. & Rajewsky, K. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23, 5080–5081 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Robben, P.M. et al. Production of IL-12 by macrophages infected with Toxoplasma gondii depends on the parasite genotype. J. Immunol. 172, 3686–3694 (2004).

    CAS  PubMed  Google Scholar 

  62. 62

    Akashi, K. et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    CAS  Google Scholar 

  63. 63

    Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 8, 1207–1216 (2007).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Sleckman (Washington University in St. Louis) for Nik−/− mice; T. Watts (University of Toronto) for Ifnar1−/− mice; J. Boothroyd (Stanford University) for the plasmid PRU-FLuc-GFP; the Immunological Genome Project consortium for use of their database54; and the Alvin J. Siteman Cancer Center at Washington University School of Medicine for use of the Center for Biomedical Informatics and Multiplex Gene Analysis Genechip Core Facility. Supported by the Howard Hughes Medical Institute, the US National Institutes of Health (AI076427-02 to K.M.M., R01 GM55479 to R.K., R01 DE021255-01 and U01 AI095542-01 to M.C., R01 DK071619 to T.S.S. and R01 DK064798 to R.D.N.), the US Department of Defense (W81XWH-09-1-0185 to K.M.M.), the American Heart Association (12PRE8610005 to A.T.S. and 12PRE12050419 to W.K.), the Canadian Institutes of Health Research (MOP 67157 to J.L.G. and FRN 11530 to C.J.G.) and the National Cancer Institute (P30 CA91842 for the Alvin J. Siteman Cancer Center).

Author information

Affiliations

Authors

Contributions

A.T.S. and K.M.M. designed the study; A.T.S., C.G.B., J.S.L. and C.S. did experiments related to infection with C. rodentium, with guidance from W.O., M.C. and K.M.M.; A.T.S., C.G.B. and D.N. did experiments related to Ltbr−/− mice, with guidance from C.J.G. and J.L.G.; N.A.M. did experiments related to wound healing, with guidance from T.S.S.; A.T.S. and X.W. did microarray analysis; A.T.S., S.R.T., W.K., W.-L.L., M.T., T.L.M. and K.G.M. did experiments related to cDC development in mice deficient in Notch2, Irf4 or Batf3, with guidance from R.K., R.D.N. and K.M.M.; A.T.S., C.G.B. and M.M.M. did experiments with Zbtb46gfp and Zbtb46DTR mice, with guidance from M.C.N. and K.M.M.; and A.T.S. and K.M.M. wrote the manuscript with contributions from all authors.

Corresponding author

Correspondence to Kenneth M Murphy.

Ethics declarations

Competing interests

W.O. is an employee of Genentech.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 18525 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Satpathy, A., Briseño, C., Lee, J. et al. Notch2-dependent classical dendritic cells orchestrate intestinal immunity to attaching-and-effacing bacterial pathogens. Nat Immunol 14, 937–948 (2013). https://doi.org/10.1038/ni.2679

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing