Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells

Abstract

Foxp3+ regulatory T (Treg) cells are a crucial immunosuppressive population of CD4+ T cells, yet the homeostatic processes and survival programs that maintain the Treg cell pool are poorly understood. Here we report that peripheral Treg cells markedly alter their proliferative and apoptotic rates to rapidly restore numerical deficit through an interleukin 2–dependent and costimulation-dependent process. By contrast, excess Treg cells are removed by attrition, dependent on the Bim-initiated Bak- and Bax-dependent intrinsic apoptotic pathway. The antiapoptotic proteins Bcl-xL and Bcl-2 were dispensable for survival of Treg cells, whereas Mcl-1 was critical for survival of Treg cells, and the loss of this antiapoptotic protein caused fatal autoimmunity. Together, these data define the active processes by which Treg cells maintain homeostasis via critical survival pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Homeostatic expansion of Treg cells is driven by increased production of IL-2.
Figure 2: The intrinsic apoptosis pathway is required to restrain Treg cell numbers to homeostatic levels.
Figure 3: Regulatory T cell survival is independent of Bcl-2 and Bcl-xL.
Figure 4: Spontaneous fatal immunopathology after Treg cell–specific deletion of Mcl-1.
Figure 5: Mcl-1 is required for Treg cell survival.
Figure 6: Regulation of Mcl-1 in Treg cells by Bim and IL-2.

Similar content being viewed by others

References

  1. Gavin, M.A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Sakaguchi, S. et al. FOXP3+ regulatory T cells in the human immune system. Nat. Rev. Immunol. 10, 490–500 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Fontenot, J.D. et al. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Chougnet, C.A. et al. A major role for Bim in regulatory T cell homeostasis. J. Immunol. 186, 156–163 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Siggs, O.M. et al. Opposing functions of the T cell receptor kinase ZAP-70 in immunity and tolerance differentially titrate in response to nucleotide substitutions. Immunity 27, 912–926 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tian, L. et al. Foxp3+ regulatory T cells exert asymmetric control over murine helper responses by inducing Th2 cell apoptosis. Blood 118, 1845–1853 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Miyara, M. et al. Human FoxP3+ regulatory T cells in systemic autoimmune diseases. Autoimmun. Rev. 10, 744–755 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Lages, C.S. et al. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J. Immunol. 181, 1835–1848 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Raynor, J. et al. Homeostasis and function of regulatory T cells in aging. Curr. Opin. Immunol. 24, 482–487 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shimizu, J. et al. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 3, 135–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Baba, J. et al. Depletion of radio-resistant regulatory T cells enhances antitumor immunity during recovery from lymphopenia. Blood 120, 2417–2427 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Youle, R.J. & Strasser, A. The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9, 47–59 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Strasser, A. The role of BH3-only proteins in the immune system. Nat. Rev. Immunol. 5, 189–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Huang, D.C. & Strasser, A. BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103, 839–842 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Zheng, L. et al. A novel role of IL-2 in organ-specific autoimmune inflammation beyond regulatory T cell checkpoint: both IL-2 knockout and Fas mutation prolong lifespan of Scurfy mice but by different mechanisms. J. Immunol. 179, 8035–8041 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Ikeda, T. et al. Dual effects of TRAIL in suppression of autoimmunity: the inhibition of Th1 cells and the promotion of regulatory T cells. J. Immunol. 185, 5259–5267 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Zhan, Y. et al. Defects in the Bcl-2-regulated apoptotic pathway lead to preferential increase of CD25 low Foxp3+ anergic CD4+ T cells. J. Immunol. 187, 1566–1577 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, X. et al. Preferential control of induced regulatory T cell homeostasis via a Bim/Bcl-2 axis. Cell Death Dis. 3, e270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, N. et al. Selective impairment of CD4+CD25+Foxp3+ regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis. Int. Immunopharmacol. 11, 212–219 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Tischner, D. et al. Defective cell death signalling along the Bcl-2 regulated apoptosis pathway compromises Treg cell development and limits their functionality in mice. J. Autoimmun. 38, 59–69 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Ma, A. et al. Bclx regulates the survival of double-positive thymocytes. Proc. Natl. Acad. Sci. USA 92, 4763–4767 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rubtsov, Y.P. et al. IL-10 produced by regulatory T cells contributes to their suppressor function by limiting inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Wagner, K.U. et al. Conditional deletion of the Bcl-x gene from erythroid cells results in hemolytic anemia and profound splenomegaly. Development 127, 4949–4958 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Vikstrom, I. et al. Mcl-1 is essential for germinal center formation and B cell memory. Science 330, 1095–1099 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schlenner, S.M. et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32, 426–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Dzhagalov, I. et al. The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages. J. Immunol. 181, 521–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Opferman, J.T. et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426, 671–676 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Strasser, A. et al. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases. EMBO J. 30, 3667–3683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Gray, D.H. et al. The BH3-only proteins Bim and Puma cooperate to impose deletional tolerance of organ-specific antigens. Immunity 37, 451–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Boyman, O. et al. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311, 1924–1927 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Bautista, J.L. et al. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat. Immunol. 10, 610–617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liston, A. & Rudensky, A.Y. Thymic development and peripheral homeostasis of regulatory T cells. Curr. Opin. Immunol. 19, 176–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Tai, X. et al. Foxp3 is pro-apoptotic and lethal to developing regulatory T cells unless counterbalanced by cytokine survival signals. Immunity (in the press) (2013).

  37. Walker, L.S. CD4+ CD25+ Treg: divide and rule? Immunology 111, 129–137 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. McNeill, A. et al. Partial depletion of CD69low-expressing natural regulatory T cells with the anti-CD25 monoclonal antibody PC61. Scand. J. Immunol. 65, 63–69 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Suffner, J. et al. Dendritic cells support homeostatic expansion of Foxp3+ regulatory T cells in Foxp3.LuciDTR mice. J. Immunol. 184, 1810–1820 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Guy, C.S. et al. Distinct TCR signaling pathways drive proliferation and cytokine production in T cells. Nat. Immunol. 14, 262–270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Khan, W.N. B cell receptor and BAFF receptor signaling regulation of B cell homeostasis. J. Immunol. 183, 3561–3567 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Carrette, F. & Surh, C.D. IL-7 signaling and CD127 receptor regulation in the control of T cell homeostasis. Semin. Immunol. 24, 209–217 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dummer, W. et al. Autologous regulation of naive T cell homeostasis within the T cell compartment. J. Immunol. 166, 2460–2468 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Gorelik, L. et al. Normal B cell homeostasis requires B cell activation factor production by radiation-resistant cells. J. Exp. Med. 198, 937–945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Liston, A. et al. Dicer-dependent microRNA pathway safeguards regulatory T cell function. J. Exp. Med. 205, 1993–2004 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Takeuchi, O. et al. Essential role of BAX,BAK in B cell homeostasis and prevention of autoimmune disease. Proc. Natl. Acad. Sci. USA 102, 11272–11277 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Raynor, J. et al. IL-15 fosters Treg accrual in aging in the face of declining IL-2 levels. Front. Immunol. (in the press).

  49. Caton, M.L. et al. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J. Exp. Med. 204, 1653–1664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fontenot, J.D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Liston, A. et al. Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc. Natl. Acad. Sci. USA 105, 11903–11908 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mombaerts, P. et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 68, 869–877 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Yu, W. et al. Continued RAG expression in late stages of B cell development and no apparent re-induction after immunization. Nature 400, 682–687 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Buch, T. et al. A Cre-inducible diphtheria toxin receptor mediates cell lineage ablation after toxin administration. Nat. Methods 2, 419–426 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Seibler, J. et al. Rapid generation of inducible mouse mutants. Nucleic Acids Res. 31, e12 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Kim, J.M. et al. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Létourneau, S. et al. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor alpha subunit CD25. Proc. Natl. Acad. Sci. USA 107, 2171–2176 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Wee, L.J. et al. CASVM: web server for SVM-based prediction of caspase substrates cleavage sites. Bioinformatics 23, 3241–3243 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Fink (University of Washington, Seattle) for providing Rag2–GFP-Tg mice backcrossed to the B6 background, L. Hennighausen (US National Institutes of Health) for providing Bcl2l1fx mice, A. Rudensky (Memorial Sloan-Kettering Cancer Center) for providing Foxp3GFP, Foxp3Cre, Foxp3Thy1.1 and Foxp3DTR mice, G. Kelly and S. Grabow (Walter and Eliza Hall Institute of Medical Research) for CreERT2Mcl1fl and CreERT2Bcl2l1flox mice and Bcl2−/− fetal liver samples, F. Kupresanin, G. Siciliano, G.-F. Dabrowski, K. Humphreys and E. Lanera (Walter and Eliza Hall Institute of Medical Research) for technical assistance, S. Korsmeyer (Harvard Medical School) for BaxflBak1−/− mice, and A. Kallies for critical feedback on the manuscript. This work was supported by grants from the VIB, Marie Curie (TREG to A.L.), European Research Council (IMMUNO to A.L.), Interuniversity Attraction Poles (VII/39 to A.L and P.M.), QSIS (to A.A.F.) and the Australian National Health and Medical Research Council (CDF-1 #637353 to D.H.D.G.). W.P. is funded by Agentschap voor Innovatie door Wetenschap en Technologie. B.C., S.M.S. and S.H.-B. are funded by the Fonds Wetenschappelijk Onderzoek. This work was made possible through Victorian State Government Operational Infrastructure Support and the Australian Government National Health and Medical Research Council Independent Research Institutes Infrastructure Support Scheme.

Author information

Authors and Affiliations

Authors

Contributions

W.P., B.C., A.P., S.M.S., J.B., M.J.H., S.S., D.F., S.H.-B., L.-F.L. and J.D. performed the experiments. D.H., A.S., P.B., R.J.L. and C.T.W. provided key reagents. S.M.S., A.A.F., P.M., J.D., D.H.D.G. and A.L. designed the study. W.P., D.H.D.G. and A.L. wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Daniel H D Gray or Adrian Liston.

Ethics declarations

Competing interests

The spouse of A.L. is an employee of UCB Pharma.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 1384 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierson, W., Cauwe, B., Policheni, A. et al. Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells. Nat Immunol 14, 959–965 (2013). https://doi.org/10.1038/ni.2649

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2649

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing