Abstract
The two pillars of modern immunology have been man and mouse; in both settings, investigators seek to reduce complexity and control environmental conditions. However, the world outside the laboratory is immensely variable; this is not 'noise' but represents the genetic and environmental framework in which the immune system evolved and functions. Placing the ever-growing understanding of immunological mechanisms in wider real-world contexts is a massive but fundamentally important challenge.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Levels of pathogen virulence and host resistance both shape the antibody response to an emerging bacterial disease
Scientific Reports Open Access 15 April 2021
-
The comparative immunology of wild and laboratory mice, Mus musculus domesticus
Nature Communications Open Access 03 May 2017
-
Mathematical Models for Immunology: Current State of the Art and Future Research Directions
Bulletin of Mathematical Biology Open Access 06 October 2016
Access options
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout

Marina Corral Spence

Marina Corral Spence
References
Prugnolle, F. et al. Curr. Biol. 15, 1022–1027 (2005).
Lazzaro, B.P. & Little, T.J. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364, 15–26 (2009).
Schmid-Hempel, P. Evolutionary Parasitology: the Integrated Study of Infections, Immunology, Ecology and Genetics (Oxford University Press, 2011).
Quintana-Murci, L., Alcaïs, A., Abel, L. & Casanova, J.L. Nat. Immunol. 8, 1165–1171 (2007).
Hampe, J. et al. Nat. Genet. 39, 207–211 (2007).
Jostins, L. et al. Nature 491, 119–124 (2012).
Quintana-Murci, L. & Clark, A.G. Nat. Rev. Immunol. 13, 280–293 (2013).
Fumagalli, M. et al. J. Exp. Med. 206, 1395–1408 (2009).
Pedersen, A.B. & Babayan, S.A. Mol. Ecol. 20, 872–880 (2011).
Devalapalli, A.P. et al. Scand. J. Immunol. 64, 125–136 (2006).
Abolins, S.R., Pocock, M.J., Hafalla, J.C., Riley, E.M. & Viney, M.E. Mol. Ecol. 20, 881–892 (2011).
Boysen, P., Eide, D.M. & Storset, A.K. Mol. Ecol. 20, 5103–5110 (2011).
Willcocks, L.C. et al. Proc. Natl. Acad. Sci. USA 107, 7881–7885 (2010).
Espéli, M. et al. J. Exp. Med. 209, 2307–2319 (2012).
Worley, K. et al. Mol. Ecol. 19, 3064–3075 (2010).
Paterson, S., Wilson, K. & Pemberton, J.M. Proc. Natl. Acad. Sci. USA 95, 3714–3719 (1998).
Coltman, D.W., Wilson, K., Pilkington, J.G., Stear, M.J. & Pemberton, J.M. Parasitology 122, 571–582 (2001).
Turner, A.K., Begon, M., Jackson, J.A., Bradley, J.E. & Paterson, S. PLoS Genet. 7, e1002343 (2011).
Bonneaud, C. et al. Proc. Natl. Acad. Sci. USA 108, 7866–7871 (2011).
Bonneaud, C., Balenger, S.L., Hill, G.E. & Russell, A.F. Mol. Ecol. 21, 4787–4796 (2012).
Pedersen, A.B. & Fenton, A. Trends Ecol. Evol. 22, 133–139 (2007).
Telfer, S. et al. Science 330, 243–246 (2010).
Lello, J., Boag, B., Fenton, A., Stevenson, I.R. & Hudson, P.J. Nature 428, 840–844 (2004).
Rolff, J. & Siva-Jothy, M.T. Science 301, 472–475 (2003).
Råberg, L. & Stjernman, M. Evolution 57, 1670–1678 (2003).
Graham, A.L. et al. Science 330, 662–665 (2010).
van der Most, P.J., de Jong, B., Parmentier, H.K. & Verhulst, S. Funct. Ecol. 25, 74–80 (2011).
Maizels, R.M. Curr. Opin. Immunol. 17, 656–661 (2005).
Jackson, J.A. et al. BMC Biol. 7, 16 (2009).
Summers, R.W., Elliott, D.E., Urban, J.F. Jr., Thompson, R.A. & Weinstock, J.V. Gastroenterology 128, 825–832 (2005).
Broadhurst, M.J. et al. PLoS Pathog. 8, e1003000 (2012).
Lee, Y.K. & Mazmanian, S.K. Science 330, 1768–1773 (2010).
Yatsunenko, T. et al. Nature 486, 222–227 (2012).
Shanley, D.P., Aw, D., Manley, N.R. & Palmer, D.B. Trends Immunol. 30, 374–381 (2009).
Palacios, M.G., Winkler, D.W., Klasing, K.C., Hasselquist, D. & Vleck, C.M. Ecology 92, 952–966 (2011).
Nussey, D.H., Watt, K., Pilkington, J.G., Zamoyska, R. & McNeilly, T.N. Aging Cell 11, 178–180 (2012).
Acknowledgements
We thank A. Pedersen, S. Reece, R. Zamoyska and K. Watt for discussion and comments. Supported by the American Asthma Foundation (R.M.M.), the Kenneth Rainin Foundation (R.M.M.), the Wellcome Trust (R.M.M.) and the Biotechnology and Biological Sciences Research Council (D.H.N.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Maizels, R., Nussey, D. Into the wild: digging at immunology's evolutionary roots. Nat Immunol 14, 879–883 (2013). https://doi.org/10.1038/ni.2643
Published:
Issue Date:
DOI: https://doi.org/10.1038/ni.2643
This article is cited by
-
Naturalizing mouse models for immunology
Nature Immunology (2021)
-
Levels of pathogen virulence and host resistance both shape the antibody response to an emerging bacterial disease
Scientific Reports (2021)
-
The comparative immunology of wild and laboratory mice, Mus musculus domesticus
Nature Communications (2017)
-
Normalizing the environment recapitulates adult human immune traits in laboratory mice
Nature (2016)
-
Reproductive investment is connected to innate immunity in a long-lived animal
Oecologia (2016)