Signaling via the IL-20 receptor inhibits cutaneous production of IL-1β and IL-17A to promote infection with methicillin-resistant Staphylococcus aureus



Staphylococcus aureus causes most infections of human skin and soft tissue and is a major infectious cause of mortality. Host defense mechanisms against S. aureus are incompletely understood. Interleukin 19 (IL-19), IL-20 and IL-24 signal through type I and type II IL-20 receptors and are associated with inflammatory skin diseases such as psoriasis and atopic dermatitis. We found here that those cytokines promoted cutaneous infection with S. aureus in mice by downregulating IL-1β- and IL-17A-dependent pathways. We noted similar effects of those cytokines in human keratinocytes after exposure to S. aureus, and antibody blockade of the IL-20 receptor improved outcomes in infected mice. Our findings identify an immunosuppressive role for IL-19, IL-20 and IL-24 during infection that could be therapeutically targeted to alter susceptibility to infection.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: IL-20RB deficiency results in diminished cutaneous infection with MRSA.
Figure 2: Recombinant IL-20R cytokines enhance cutaneous infection with MRSA.
Figure 3: IL-20R signaling suppresses the IL-17A response to infection with MRSA.
Figure 4: The IL-20R cytokines suppress transcription of the gene encoding pro-IL-1β.
Figure 5: Signaling via IL-20R sumoylates C/EBP-β.
Figure 6: Recombinant IL-1β reverses IL-20R-induced susceptibility to S. aureus.
Figure 7: The IL-20R cytokines are induced by S. aureus in human keratinocytes and can be therapeutically blocked in the mouse skin-infection model.


  1. 1

    Miller, L.S. & Cho, J.S. Immunity against Staphylococcus aureus cutaneous infections. Nat. Rev. Immunol. 11, 505–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Waters, A.E. et al. Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin. Infect. Dis. 52, 1227–1230 (2011).

    PubMed  PubMed Central  Google Scholar 

  3. 3

    Rizek, C.F. et al. Identification of Staphylococcus aureus carrying the mecA gene in ready-to-eat food products sold in Brazil. Foodborne Pathog. Dis. 8, 561–563 (2011).

    CAS  PubMed  Google Scholar 

  4. 4

    Mazmanian, S.K., Round, J.L. & Kasper, D.L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008).

    CAS  PubMed  Google Scholar 

  5. 5

    Tong, S.Y., Chen, L.F. & Fowler, V.G. Jr. Colonization, pathogenicity, host susceptibility, and therapeutics for Staphylococcus aureus: what is the clinical relevance? Semin. Immunopathol. 34, 185–200 (2012).

    PubMed  Google Scholar 

  6. 6

    Myles, I.A. & Datta, S.K. Staphylococcus aureus: an introduction. Semin. Immunopathol. 34, 181–184 (2012).

    PubMed  PubMed Central  Google Scholar 

  7. 7

    Krishna, S. & Miller, L.S. Innate and adaptive immune responses against Staphylococcus aureus skin infections. Semin. Immunopathol. 34, 261–280 (2012).

    CAS  PubMed  Google Scholar 

  8. 8

    Cassat, J.E. & Skaar, E.P. Metal ion acquisition in Staphylococcus aureus: overcoming nutritional immunity. Semin. Immunopathol. 34, 215–235 (2012).

    CAS  PubMed  Google Scholar 

  9. 9

    Gaidamakova, E.K. et al. Preserving immunogenicity of lethally irradiated viral and bacterial vaccine epitopes using a radio- protective Mn2+-peptide complex from Deinococcus. Cell Host Microbe 12, 117–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    McLoughlin, R.M. et al. CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proc. Natl. Acad. Sci. USA 103, 10408–10413 (2006).

    CAS  PubMed  Google Scholar 

  11. 11

    Kim, H.K., Kim, H.Y., Schneewind, O. & Missiakas, D. Identifying protective antigens of Staphylococcus aureus, a pathogen that suppresses host immune responses. FASEB J. 10, 3605–3612 (2011).

    Google Scholar 

  12. 12

    Rogers, D.E. & Melly, M.A. Speculations on the immunology of staphylococcal infections. Ann. NY Acad. Sci. 128, 274–284 (1965).

    CAS  PubMed  Google Scholar 

  13. 13

    Schmaler, M., Jann, N.J., Ferracin, F. & Landmann, R. T and B cells are not required for clearing Staphylococcus aureus in systemic infection despite a strong TLR2-MyD88-dependent T cell activation. J. Immunol. 186, 443–452 (2011).

    CAS  PubMed  Google Scholar 

  14. 14

    Cho, J.S. et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Invest. 120, 1762–1773 (2010).

    PubMed  PubMed Central  Google Scholar 

  15. 15

    Miller, L.S. et al. MyD88 mediates neutrophil recruitment initiated by IL-1R but not TLR2 activation in immunity against Staphylococcus aureus. Immunity 24, 79–91 (2006).

    CAS  PubMed  Google Scholar 

  16. 16

    Rigby, K.M. & DeLeo, F.R. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin. Immunopathol. 34, 237–259 (2012).

    CAS  PubMed  Google Scholar 

  17. 17

    Kunz, S. et al. Interleukin (IL)-19, IL-20 and IL-24 are produced by and act on keratinocytes and are distinct from classical ILs. Exp. Dermatol. 15, 991–1004 (2006).

    CAS  PubMed  Google Scholar 

  18. 18

    Commins, S., Steinke, J.W. & Borish, L. The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J. Allergy Clin. Immunol. 121, 1108–1111 (2008).

    CAS  Google Scholar 

  19. 19

    Ouyang, W., Rutz, S., Crellin, N., Valdez, P. & Hymowitz, S. Regulation and function of the IL-10 family of cytokines in inflammation and disease. Annu. Rev. Immunol. 29, 71–109 (2011).

    CAS  PubMed  Google Scholar 

  20. 20

    Logsdon, N.J., Deshpande, A., Harris, B.D., Rajashankar, K.R. & Walter, M.R. Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc. Natl. Acad. Sci. USA 109, 12704–12709 (2012).

    CAS  PubMed  Google Scholar 

  21. 21

    Sa, S.M. et al. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J. Immunol. 178, 2229–2240 (2007).

    CAS  PubMed  Google Scholar 

  22. 22

    Rømer, J. et al. Epidermal overexpression of interleukin-19 and -20 mRNA in psoriatic skin disappears after short-term treatment with cyclosporine a or calcipotriol. J. Invest. Dermatol. 121, 1306–1311 (2003).

    PubMed  Google Scholar 

  23. 23

    He, M. & Liang, P. IL-24 transgenic mice: in vivo evidence of overlapping functions for IL-20, IL-22, and IL-24 in the epidermis. J. Immunol. 184, 1793–1798 (2010).

    CAS  PubMed  Google Scholar 

  24. 24

    Blumberg, H. et al. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell 104, 9–19 (2001).

    CAS  PubMed  Google Scholar 

  25. 25

    Nograles, K.E. & Krueger, J.G. Anti-cytokine therapies for psoriasis. Exp. Cell Res. 317, 1293–1300 (2011).

    CAS  PubMed  Google Scholar 

  26. 26

    Tokura, Y., Mori, T. & Hino, R. Psoriasis and other Th17-mediated skin diseases. J. UOEH 32, 317–328 (2010).

    CAS  PubMed  Google Scholar 

  27. 27

    Holland, D.B., Bojar, R.A., Farrar, M.D. & Holland, K.T. Differential innate immune responses of a living skin equivalent model colonized by Staphylococcus epidermidis or Staphylococcus aureus. FEMS Microbiol. Lett. 290, 149–155 (2009).

    CAS  PubMed  Google Scholar 

  28. 28

    Ma, Y. et al. Interleukin 24 as a novel potential cytokine immunotherapy for the treatment of Mycobacterium tuberculosis infection. Microbes Infect. 13, 1099–1110 (2011).

    CAS  PubMed  Google Scholar 

  29. 29

    Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Aujla, S.J. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med. 14, 275–281 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Kao, C.Y. et al. IL-17 markedly up-regulates beta-defensin-2 expression in human airway epithelium via JAK and NF-κB signaling pathways. J. Immunol. 173, 3482–3491 (2004).

    CAS  PubMed  Google Scholar 

  32. 32

    Cai, Y. et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35, 596–610 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Nagalakshmi, M.L., Murphy, E., McClanahan, T. & de Waal Malefyt, R. Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization. Int. Immunopharmacol. 4, 577–592 (2004).

    CAS  PubMed  Google Scholar 

  34. 34

    Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  Google Scholar 

  35. 35

    Sutton, C.E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    CAS  PubMed  Google Scholar 

  36. 36

    Liu, F.L. et al. Interleukin (IL)-23 p19 expression induced by IL-1β in human fibroblast-like synoviocytes with rheumatoid arthritis via active nuclear factor-κB and AP-1 dependent pathway. Rheumatology (Oxford) 46, 1266–1273 (2007).

    CAS  Google Scholar 

  37. 37

    Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    CAS  Google Scholar 

  38. 38

    Tsukada, J., Yoshida, Y., Kominato, Y. & Auron, P.E. The CCAAT/enhancer (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Cytokine 54, 6–19 (2011).

    CAS  PubMed  Google Scholar 

  39. 39

    Tsukada, J., Saito, K., Waterman, W.R., Webb, A.C. & Auron, P.E. Transcription factors NF-IL6 and CREB recognize a common essential site in the human prointerleukin 1β gene. Mol. Cell Biol. 14, 7285–7297 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Otkjaer, K. et al. IL-20 gene expression is induced by IL-1β through mitogen-activated protein kinase and NF-κB-dependent mechanisms. J. Invest. Dermatol. 127, 1326–1336 (2007).

    CAS  PubMed  Google Scholar 

  41. 41

    Tohyama, M. et al. IL-17 and IL-22 mediate IL-20 subfamily cytokine production in cultured keratinocytes via increased IL-22 receptor expression. Eur. J. Immunol. 39, 2779–2788 (2009).

    CAS  PubMed  Google Scholar 

  42. 42

    Azuma, Y.T., Nakajima, H. & Takeuchi, T. IL-19 as a potential therapeutic in autoimmune and inflammatory diseases. Curr. Pharm. Des. 17, 3776–3780 (2011).

    CAS  PubMed  Google Scholar 

  43. 43

    Azuma, Y.T. et al. Interleukin-19 protects mice from innate-mediated colonic inflammation. Inflamm. Bowel Dis. 16, 1017–1028 (2010).

    PubMed  Google Scholar 

  44. 44

    Alanärä, T., Karstila, K., Moilanen, T., Silvennoinen, O. & Isomaki, P. Expression of IL-10 family cytokines in rheumatoid arthritis: elevated levels of IL-19 in the joints. Scand. J. Rheumatol. 39, 118–126 (2010).

    PubMed  Google Scholar 

  45. 45

    Sakurai, N. et al. Expression of IL-19 and its receptors in RA: potential role for synovial hyperplasia formation. Rheumatology (Oxford) 47, 815–820 (2008).

    CAS  Google Scholar 

  46. 46

    Kragstrup, T.W. et al. The expression of IL-20 and IL-24 and their shared receptors are increased in rheumatoid arthritis and spondyloarthropathy. Cytokine 41, 16–23 (2008).

    CAS  PubMed  Google Scholar 

  47. 47

    Chan, J.R. et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med. 203, 2577–2587 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115–1119 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Valdez, P.A. et al. Prostaglandin E2 suppresses antifungal immunity by inhibiting interferon regulatory factor 4 function and interleukin-17 expression in T cells. Immunity 36, 668–679 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Straccia, M. et al. Pro-inflammatory gene expression and neurotoxic effects of activated microglia are attenuated by absence of CCAAT/enhancer binding protein β. J. Neuroinflammation 8, 156 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank Y. Iwakura (University of Tokyo) for Il17a−/− mice; J. O'Shea (National Institute of Arthritis, Musculoskeletal and Skin Diseases) for Stat3WT/ΔV463 mice; F. DeLeo (Rocky Mountain Labs, National Institute of Allergy and Infectious Diseases) for the clinical isolate of MRSA USA300 (LAC strain); A. Costanzo and J. Jameson (The Scripps Research Institute) for PAM 2-12 cells; A. Coxon (National Cancer Institute) for foreskin samples; and F. DeLeo and J. O'Shea for critical reading of the manuscript. Supported by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases (US National Institutes of Health).

Author information




I.A.M. designed, did and analyzed the experiments, and wrote the manuscript; N.M.F., P.A.V. and P.J.V. assisted with experiments; S.N. and Y.B. assisted with acquisition and analysis of skin cell flow cytometry; W.O. provided Il20rb−/− and Il22−/− mice; S.K.D. oversaw design and analysis of the experiments and wrote the manuscript; and all authors critically read the manuscript.

Corresponding author

Correspondence to Sandip K Datta.

Ethics declarations

Competing interests

W.O. is an employee of Genentech.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 946 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Myles, I., Fontecilla, N., Valdez, P. et al. Signaling via the IL-20 receptor inhibits cutaneous production of IL-1β and IL-17A to promote infection with methicillin-resistant Staphylococcus aureus. Nat Immunol 14, 804–811 (2013).

Download citation

Further reading