Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The lymphoid lineage–specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells

Abstract

Although T cell activation can result from signaling via T cell antigen receptor (TCR) alone, physiological T cell responses require costimulation via the coreceptor CD28. Through the use of an N-ethyl-N-nitrosourea–mutagenesis screen, we identified a mutation in Rltpr. We found that Rltpr was a lymphoid cell–specific, actin-uncapping protein essential for costimulation via CD28 and the development of regulatory T cells. Engagement of TCR-CD28 at the immunological synapse resulted in the colocalization of CD28 with both wild-type and mutant Rltpr proteins. However, the connection between CD28 and protein kinase C-θ and Carma1, two key effectors of CD28 costimulation, was abrogated in T cells expressing mutant Rltpr, and CD28 costimulation did not occur in those cells. Our findings provide a more complete model of CD28 costimulation in which Rltpr has a key role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of Basilic Lat(Y136F) mice.
Figure 2: Characterization of the Basilic mutation and expression of Rltpr.
Figure 3: Development of conventional T cells in RltprBas and Cd28−/− mice.
Figure 4: Similar T cell functional defects in RltprBas and Cd28−/− mice.
Figure 5: Development of Treg cells in RltprBas and Cd28−/− mice.
Figure 6: Microclusters of Rltpr or RltprBas form in a CD80-dependent manner and localize together with CD28 microclusters.
Figure 7: Rltpr is essential for CD28-induced translocation of PKC-θ and CARMA1 to the cSMAC.
Figure 8: RltprBas enhances endocytosis of CD28.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

References

  1. Okkenhaug, K. et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat. Immunol. 2, 325–332 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Holdorf, A.D., Lee, K.H., Burack, W.R., Allen, P.M. & Shaw, A.S. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat. Immunol. 3, 259–264 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Kong, K.F. et al. A motif in the V3 domain of the kinase PKC-θ determines its localization in the immunological synapse and functions in T cells via association with CD28. Nat. Immunol. 12, 1105–1112 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Raab, M., Pfister, S. & Rudd, C.E. CD28 signaling via VAV/SLP-76 adaptors: regulation of cytokine transcription independent of TCR ligation. Immunity 15, 921–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Pagán, A.J., Pepper, M., Chu, H.H., Green, J.M. & Jenkins, M.K. CD28 promotes CD4+ T cell clonal expansion during infection independently of its YMNM and PYAP motifs. J. Immunol. 189, 2909–2917 (2012).

    Article  PubMed  CAS  Google Scholar 

  6. Thome, M., Charton, J.E., Pelzer, C. & Hailfinger, S. Antigen receptor signaling to NF-κB via CARMA1, BCL10, and MALT1. Cold Spring Harb. Perspect. Biol. 2, a003004 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Wang, X., Chuang, H.C., Li, J.P. & Tan, T.H. Regulation of PKC-θ function by phosphorylation in T cell receptor signaling. Front. Immunol. 3, 197 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jiang, C. & Lin, X. Regulation of NF-κB by the CARD proteins. Immunol. Rev. 246, 141–153 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Yokosuka, T. et al. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C θ translocation. Immunity 29, 589–601 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dustin, M.L. The cellular context of T cell signaling. Immunity 30, 482–492 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vardhana, S., Choudhuri, K., Varma, R. & Dustin, M.L. Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster. Immunity 32, 531–540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aguado, E. et al. Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296, 2036–2040 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Sommers, C.L. et al. A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296, 2040–2043 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Wang, Y. et al. Th2 lymphoproliferative disorder of LatY136F mutant mice unfolds independently of TCR-MHC engagement and is insensitive to the action of Foxp3+ regulatory T cells. J. Immunol. 180, 1565–1575 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Mingueneau, M. et al. Loss of the LAT adaptor converts antigen-responsive T cells into pathogenic effectors that function independently of the T cell receptor. Immunity 31, 197–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Chevrier, S., Genton, C., Malissen, B., Malissen, M. & Acha-Orbea, H. Dominant role of CD80–CD86 over CD40 and ICOSL in the massive polyclonal B cell activation mediated by LAT(Y136F) CD4+ T Cells. Front. Immunol. 3, 1–14 (2012).

    Article  Google Scholar 

  17. Beutler, B. et al. Genetic analysis of resistance to viral infection. Nat. Rev. Immunol. 7, 753–766 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Cook, M.C., Vinuesa, C.G. & Goodnow, C.C. ENU-mutagenesis: insight into immune function and pathology. Curr. Opin. Immunol. 18, 627–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Liang, Y., Niederstrasser, H., Edwards, M., Jackson, C.E. & Cooper, J.A. Distinct roles for CARMIL isoforms in cell migration. Mol. Biol. Cell 20, 5290–5305 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hernandez-Valladares, M. et al. Structural characterization of a capping protein interaction motif defines a family of actin filament regulators. Nat. Struct. Mol. Biol. 17, 497–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fujiwara, I., Remmert, K. & Hammer, J.A. III. Direct observation of the uncapping of capping protein-capped actin filaments by CARMIL homology domain 3. J. Biol. Chem. 285, 2707–2720 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Yang, C. et al. Mammalian CARMIL inhibits actin filament capping by capping protein. Dev. Cell 9, 209–221 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ng, A.C. et al. Human leucine-rich repeat proteins: a genome-wide bioinformatic categorization and functional analysis in innate immunity. Proc. Natl. Acad. Sci. USA 108 (suppl. 1), 4631–4638 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Junttila, M.R., Saarinen, S., Schmidt, T., Kast, J. & Westermarck, J. Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics 5, 1199–1203 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Bachmann, M.F. et al. T cell responses are governed by avidity and co-stimulatory thresholds. Eur. J. Immunol. 26, 2017–2022 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–749 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Tai, X., Cowan, M., Feigenbaum, L. & Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat. Immunol. 6, 152–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Román, E., Shino, H., Qin, F.X. & Liu, Y.J. Cutting edge: Hematopoietic-derived APCs select regulatory T cells in thymus. J. Immunol. 185, 3819–3823 (2010).

    Article  PubMed  CAS  Google Scholar 

  31. Vang, K.B. et al. Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. J. Immunol. 184, 4074–4077 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen, A.W. & Daugherty, P.S. Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat. Biotechnol. 23, 355–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Campi, G., Varma, R. & Dustin, M.L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Yokosuka, T. et al. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 33, 326–339 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Zanin-Zhorov, A. et al. Protein kinase C-θ mediates negative feedback on regulatory T cell function. Science 328, 372–376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singleton, K.L. et al. Spatiotemporal patterning during T cell activation is highly diverse. Sci. Signal. 2, ra15 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Singleton, K. et al. A large T cell invagination with CD2 enrichment resets receptor engagement in the immunological synapse. J. Immunol. 177, 4402–4413 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. DeFord-Watts, L.M. et al. The CD3 ζ subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. J. Immunol. 186, 6839–6847 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Cáfaï, D. et al. CD28 receptor endocytosis is targeted by mutations that disrupt phosphatidylinositol 3-kinase binding and costimulation. J. Immunol. 160, 2223–2230 (1998).

    Google Scholar 

  41. Badour, K. et al. Interaction of the Wiskott-Aldrich syndrome protein with sorting nexin 9 is required for CD28 endocytosis and cosignaling in T cells. Proc. Natl. Acad. Sci. USA 104, 1593–1598 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barnes, M.J. et al. Commitment to the regulatory T cell lineage requires CARMA1 in the thymus but not in the periphery. PLoS Biol. 7, e51 (2009).

    Article  PubMed  CAS  Google Scholar 

  43. Molinero, L.L. et al. CARMA1 controls an early checkpoint in the thymic development of FoxP3+ regulatory T cells. J. Immunol. 182, 6736–6743 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Jung, G., Remmert, K., Wu, X., Volosky, J.M. & Hammer, J.A. III. The Dictyostelium CARMIL protein links capping protein and the Arp2/3 complex to type I myosins through their SH3 domains. J. Cell Biol. 153, 1479–1497 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takeda, S. et al. Actin capping protein and its inhibitor CARMIL: how intrinsically disordered regions function. Phys. Biol. 8, 035005 (2011).

    Article  PubMed  CAS  Google Scholar 

  46. Burkhardt, J.K., Carrizosa, E. & Shaffer, M.H. The actin cytoskeleton in T cell activation. Annu. Rev. Immunol. 26, 233–259 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Hutchings, N.J., Clarkson, N., Chalkley, R., Barclay, A.N. & Brown, M.H. Linking the T cell surface protein CD2 to the actin-capping protein CAPZ via CMS and CIN85. J. Biol. Chem. 278, 22396–22403 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Matsuzaka, Y. et al. Identification, expression analysis and polymorphism of a novel RLTPR gene encoding a RGD motif, tropomodulin domain and proline/leucine-rich regions. Gene 343, 291–304 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Pointon, J.J. et al. The chromosome 16q region associated with ankylosing spondylitis includes the candidate gene tumour necrosis factor receptor type 1-associated death domain (TRADD). Ann. Rheum. Dis. 69, 1243–1246 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Seder, R.A., Paul, W.E., Davis, M.M. & Fazekas de St Groth, B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 176, 1091–1098 (1992).

    Article  CAS  PubMed  Google Scholar 

  51. Malissen, M. et al. Altered T cell development in mice with a targeted mutation of the CD3-ɛ gene. EMBO J. 14, 4641–4653 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ordoñez-Rueda, D. et al. A hypomorphic mutation in the Gfi1 transcriptional repressor results in a novel form of neutropenia. Eur. J. Immunol. 42, 2395–2408 (2012).

    Article  PubMed  CAS  Google Scholar 

  53. Harakalova, M. et al. Multiplexed array-based and in-solution genomic enrichment for flexible and cost-effective targeted next-generation sequencing. Nat. Protoc. 6, 1870–1886 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Kitamura, T. et al. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp. Hematol. 31, 1007–1014 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Heavey, B., Charalambous, C., Cobaleda, C. & Busslinger, M. Myeloid lineage switch of Pax5 mutant but not wild-type B cell progenitors by C/EBPalpha and GATA factors. EMBO J. 22, 3887–3897 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Reske-Kunz, A.B. & Rude, E. Insulin-specific T cell hybridomas derived from (H-2b x H-2k)F1 mice preferably employ F1-unique restriction elements for antigen recognition. Eur. J. Immunol. 15, 1048–1054 (1985).

    Article  CAS  PubMed  Google Scholar 

  58. Tokunaga, M., Kitamura, K., Saito, K., Iwane, A.H. & Yanagida, T. Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235, 47–53 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank B. Beutler, D. Ordonez-Rueda, H. Holota, J. Ewbank and R. Lasserre for advice; and G. Kollias for leading the MUGEN European network. Supported by Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Agence Nationale de Recherche (ADAPT project to M.M.), European Communities (MASTERSWITCH, SYBILLA and MUGEN projects to B.M.), Precursory Research for Embryonic Science and Technology Program of the Japan Science and Technology Agency (T.Y.), Grant-in-Aid for Scientific Research on Innovative Areas (T.Y.), National Science Foundation (NSF 1121793 to C.W.), Groupe d'Intérêt Scientifique–Infrastructures en Biologie Santé et Agronomie, Centre d'Immunophénomique, the AXA Research Fund (M.C.) and the China Scholarship Council (Y.L.).

Author information

Authors and Affiliations

Authors

Contributions

M.M. and B.M. conceived of the project; Y.L. and M.M. designed and did the experiments for Figures 1,2,3,4,5 and 8 and Supplementary Figures 1, 3 and 5; M.C. and R.R. designed and did the experiments for Supplementary Figures 2 and 4; C.W. designed and did the experiments for Supplementary Figure 7 and Supplementary Movies 1 and 2; T.Y., M.C. and T.S. designed and did the experiments for Figures 6 and 7 and Supplementary Figure 6; Y.L., J.I. and I.J.N. contributed to the next-generation sequencing; J.I. did the bioinformatic analysis; A.M., E.B. and M.S. contributed reagents and technical support; and M.M. and B.M. wrote the manuscript.

Corresponding author

Correspondence to Bernard Malissen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 3060 kb)

Supplementary Movie 1

Representative interaction of 5C.C7 CD4+ T cells retrovirally transduced to express the Rltpr-YPET sensor with MCC-pulsed mouse CH27 B lymphoma cells. DIC images are shown on the top, with matching top-down, maximum projections of 3D sensor fluorescence data shown at the bottom. The sensor fluorescence intensity is displayed in a rainbow-like, false-color scale (increasing from blue to red). (MOV 753 kb)

Supplementary Movie 2

Representative interaction of 5C.C7 CD4+ T cells retrovirally transduced to express the RltprBas-YPET sensor with MCC-pulsed mouse CH27 B lymphoma cells. DIC images are shown on the top, with matching top-down, maximum projections of 3D sensor fluorescence data shown at the bottom. The sensor fluorescence intensity is displayed in a rainbow-like, false-color scale (increasing from blue to red). (MOV 824 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, Y., Cucchetti, M., Roncagalli, R. et al. The lymphoid lineage–specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat Immunol 14, 858–866 (2013). https://doi.org/10.1038/ni.2634

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2634

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing