Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A conserved human T cell population targets mycobacterial antigens presented by CD1b

Abstract

Human T cell antigen receptors (TCRs) pair in millions of combinations to create complex and unique T cell repertoires for each person. Through the use of tetramers to analyze TCRs reactive to the antigen-presenting molecule CD1b, we detected T cells with highly stereotyped TCR α-chains present among genetically unrelated patients with tuberculosis. The germline-encoded, mycolyl lipid–reactive (GEM) TCRs had an α-chain bearing the variable (V) region TRAV1-2 rearranged to the joining (J) region TRAJ9 with few nontemplated (N)-region additions. Analysis of TCRs by high-throughput sequencing, binding and crystallography showed linkage of TCRα sequence motifs to high-affinity recognition of antigen. Thus, the CD1-reactive TCR repertoire is composed of at least two compartments: high-affinity GEM TCRs, and more-diverse TCRs with low affinity for CD1b-lipid complexes. We found high interdonor conservation of TCRs that probably resulted from selection by a nonpolymorphic antigen-presenting molecule and an immunodominant antigen.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD1b-restricted T cell clones generated by conventional methods.
Figure 2: Tetramer-based approaches efficiently generate CD1b-restricted T cell clones.
Figure 3: Conserved TCRs and CD4 define GEM T cells.
Figure 4: GEM TCR affinity.
Figure 5: Antigen specificity of TCR transfectants.
Figure 6: GEM TCR structures.
Figure 7: GEM T cells in polyclonal populations ex vivo.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Beckman, E.M. et al. Recognition of a lipid antigen by CD1-restricted αβ+ T cells. Nature 372, 691–694 (1994).

    CAS  PubMed  Google Scholar 

  2. Han, M., Hannick, L.I., DiBrino, M. & Robinson, M.A. Polymorphism of human CD1 genes. Tissue Antigens 54, 122–127 (1999).

    CAS  PubMed  Google Scholar 

  3. Porcelli, S., Yockey, C.E., Brenner, M.B. & Balk, S.P. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD48 αβ T cells demonstrates preferential use of several V beta genes and an invariant TCR α chain. J. Exp. Med. 178, 1–16 (1993).

    CAS  PubMed  Google Scholar 

  4. Fowlkes, B.J. et al. A novel population of T-cell receptor αβ-bearing thymocytes which predominantly expresses a single V β gene family. Nature 329, 251–254 (1987).

    CAS  PubMed  Google Scholar 

  5. Cardell, S. et al. CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J. Exp. Med. 182, 993–1004 (1995).

    CAS  PubMed  Google Scholar 

  6. Van Rhijn, I. et al. CD1d-restricted T cell activation by nonlipidic small molecules. Proc. Natl. Acad. Sci. USA 101, 13578–13583 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Grant, E.P. et al. Molecular recognition of lipid antigens by T cell receptors. J. Exp. Med. 189, 195–205 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. de Jong, A. et al. CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nat. Immunol. 11, 1102–1109 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. de Lalla, C. et al. High-frequency and adaptive-like dynamics of human CD1 self-reactive T cells. Eur. J. Immunol. 41, 602–610 (2010).

    Google Scholar 

  10. Vincent, M.S., Xiong, X., Grant, E.P., Peng, W. & Brenner, M.B. CD1a-, b-, and c-restricted TCRs recognize both self and foreign antigens. J. Immunol. 175, 6344–6351 (2005).

    CAS  PubMed  Google Scholar 

  11. Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J. & Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231–237 (2004).

    CAS  PubMed  Google Scholar 

  12. Kasmar, A., Van Rhijn, I. & Moody, D.B. The evolved functions of CD1 during infection. Curr. Opin. Immunol. 21, 397–403 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Porcelli, S., Morita, C.T. & Brenner, M.B. CD1b restricts the response of human CD48 T lymphocytes to a microbial antigen. Nature 360, 593–597 (1992).

    CAS  PubMed  Google Scholar 

  14. Gilleron, M. et al. Diacylated sulfoglycolipids are novel mycobacterial antigens stimulating CD1-restricted T cells during infection with Mycobacterium tuberculosis. J. Exp. Med. 199, 649–659 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Moody, D.B. et al. Structural requirements for glycolipid antigen recognition by CD1b-restricted T cells. Science 278, 283–286 (1997).

    CAS  PubMed  Google Scholar 

  16. Layre, E. et al. Mycolic acids constitute a scaffold for mycobacterial lipid antigens stimulating CD1-restricted T cells. Chem. Biol. 16, 82–92 (2009).

    CAS  PubMed  Google Scholar 

  17. Cohen, N.R., Garg, S. & Brenner, M.B. Antigen Presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv. Immunol. 102, 1–94 (2009).

    CAS  PubMed  Google Scholar 

  18. Tilloy, F. et al. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J. Exp. Med. 189, 1907–1921 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kasmar, A.G. et al. CD1b tetramers bind αβ T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. J. Exp. Med. 208, 1741–1747 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Moody, D.B. et al. CD1b-mediated T cell recognition of a glycolipid antigen generated from mycobacterial lipid and host carbohydrate during infection. J. Exp. Med. 192, 965–976 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ulrichs, T., Moody, D.B., Grant, E., Kaufmann, S.H. & Porcelli, S.A. T-cell responses to CD1-presented lipid antigens in humans with Mycobacterium tuberculosis infection. Infect. Immun. 71, 3076–3087 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Van Rhijn, I. et al. Low cross-reactivity of T-cell responses against lipids from Mycobacterium bovis and M. avium paratuberculosis during natural infection. Eur. J. Immunol. 39, 3031–3041 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Keane, J. et al. Tuberculosis associated with infliximab, a tumor necrosis factor α-neutralizing agent. N. Engl. J. Med. 345, 1098–1104 (2001).

    CAS  PubMed  Google Scholar 

  24. Flynn, J.L. et al. An essential role for interferon γ in resistance to Mycobacterium tuberculosis infection. J. Exp. Med. 178, 2249–2254 (1993).

    CAS  PubMed  Google Scholar 

  25. Stenger, S. et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282, 121–125 (1998).

    CAS  PubMed  Google Scholar 

  26. Messi, M. et al. Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nat. Immunol. 4, 78–86 (2003).

    CAS  PubMed  Google Scholar 

  27. Mongkolsapaya, J. et al. Antigen-specific expansion of cytotoxic T lymphocytes in acute measles virus infection. J. Virol. 73, 67–71 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Freeman, J.D., Warren, R.L., Webb, J.R., Nelson, B.H. & Holt, R.A. Profiling the T-cell receptor β-chain repertoire by massively parallel sequencing. Genome Res. 19, 1817–1824 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gras, S. et al. The shaping of T cell receptor recognition by self-tolerance. Immunity 30, 193–203 (2009).

    CAS  PubMed  Google Scholar 

  30. Wun, K.S. et al. A minimal binding footprint on CD1d-glycolipid is a basis for selection of the unique human NKT TCR. J. Exp. Med. 205, 939–949 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Reantragoon, R. et al. Structural insight into MR1-mediated recognition of the mucosal associated invariant T cell receptor. J. Exp. Med. 209, 761–774 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012).

    CAS  PubMed  Google Scholar 

  33. Gold, M.C. et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 8, e1000407 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Pellicci, D.G. et al. Differential recognition of CD1d-α-galactosyl ceramide by the Vβ8.2 and Vβ7 semi-invariant NKT T cell receptors. Immunity 31, 47–59 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Martin, E. et al. Stepwise development of MAIT cells in mouse and human. PLoS Biol. 7, e54 (2009).

    PubMed  Google Scholar 

  36. Cohen, N.R. et al. Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells. Nat. Immunol. 14, 90–99 (2013).

    CAS  PubMed  Google Scholar 

  37. Day, C.L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    CAS  PubMed  Google Scholar 

  38. Montamat-Sicotte, D.J. et al. A mycolic acid-specific CD1-restricted T cell population contributes to acute and memory immune responses in human tuberculosis infection. J. Clin. Invest. 121, 2493–2503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Felio, K. et al. CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. J. Exp. Med. 206, 2497–2509 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dougan, S.K., Kaser, A. & Blumberg, R.S. CD1 expression on antigen-presenting cells. Curr. Top. Microbiol. Immunol. 314, 113–141 (2007).

    CAS  PubMed  Google Scholar 

  41. Su, L.F., Kidd, B.A., Han, A., Kotzin, J.J. & Davis, M.M. Virus-specific CD4+ memory-phenotype T cells are abundant in unexposed adults. Immunity 38, 373–383 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ly, D. et al. CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens. J. Exp. Med. 210, 729–741 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Turner, S.J., Doherty, P.C., McCluskey, J. & Rossjohn, J. Structural determinants of T-cell receptor bias in immunity. Nat. Rev. Immunol. 6, 883–894 (2006).

    CAS  PubMed  Google Scholar 

  44. Venturi, V., Price, D.A., Douek, D.C. & Davenport, M.P. The molecular basis for public T-cell responses? Nat. Rev. Immunol. 8, 231–238 (2008).

    CAS  PubMed  Google Scholar 

  45. Klarenbeek, P.L. et al. Human T-cell memory consists mainly of unexpanded clones. Immunol. Lett. 133, 42–48 (2010).

    CAS  PubMed  Google Scholar 

  46. Klarenbeek, P.L. et al. Inflamed target tissue provides a specific niche for highly expanded T-cell clones in early human autoimmune disease. Ann. Rheum. Dis. 71, 1088–1093 (2012).

    CAS  PubMed  Google Scholar 

  47. Smart, O.S. et al. Exploiting structure similarity in refinement: automated NCS and target-structure restraints in BUSTER. Acta Crystallogr. D Biol. Crystallogr. 68, 368–380 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tynan, F.E. et al. A T cell receptor flattens a bulged antigenic peptide presented by a major histocompatibility complex class I molecule. Nat. Immunol. 8, 268–276 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Tetramer Core Facility of the US National Institutes of Health for CD1b protein; M. Turner, C. Seshadri and the Shattuck Hospital for clinical collaboration; L. Tan for technical help; and the beamline staff at the Australian synchrotron for assistance with data collection. Supported by the US National Institute of Allergy and Infectious Diseases (AI04393, AR048632 to D.B.M., and K08 AI089858 to A.K.) the Burroughs Wellcome Fund, Nederlands Wetenschappelijk Onderzoek (Meervoud 836.08.001 to I.V.R.), the National Health and Medical Research Council (D.I.G. and J.R.) and the Australian Research Council (S.G.).

Author information

Authors and Affiliations

Authors

Contributions

I.V.R. designed and did experiments and prepared the manuscript; D.B.M. supervised the experiments and prepared the manuscript; A.K. developed tetramer methods and patient cohorts and analyzed PD-1, CD161 and CD69 by flow cytometry; A.d.J. designed experiments and provided technical advice; S.G., M.B., D.I.G. and J.R. designed experiments and contributed affinity and structural data for TCRs; D.I.G., J.R. and S.G. assisted in preparation of the manuscript; W.d.J. did Luminex experiments; M.E.D. and N.d.V. did deep-sequencing experiments; and J.D.A. provided CD1b monomers.

Corresponding authors

Correspondence to Ildiko Van Rhijn or D Branch Moody.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 2468 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Rhijn, I., Kasmar, A., de Jong, A. et al. A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat Immunol 14, 706–713 (2013). https://doi.org/10.1038/ni.2630

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2630

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing