TH2, allergy and group 2 innate lymphoid cells

A Corrigendum to this article was published on 18 December 2013

This article has been updated

Abstract

The initiation of type 2 immune responses by the epithelial cell–derived cytokines IL-25, IL-33 and TSLP has been an area of extensive research in the past decade. Such studies have led to the identification of a new innate lymphoid subset that produces the canonical type 2 cytokines IL-5, IL-9 and IL-13 in response to IL-25 and IL-33. These group 2 or type 2 innate lymphoid cells (ILC2 cells) represent a critical source of type 2 cytokines in vivo and serve an important role in orchestrating the type 2 response to helminths and allergens. Further characterization of ILC2 cell biology will enhance the understanding of type 2 responses and may identify new treatments for asthma, allergies and parasitic infections. Interactions between ILC2 cells and the adaptive immune system, as well as examination of potential roles for ILC2 cells in the maintenance of homeostasis, promise to be particularly fruitful areas of future research.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Initiation and propagation of type 2 responses.

Marina Corral Spence

Figure 2: Innate and adaptive type 2 cell ontogeny.
Figure 3: Potential interactions of ILC2 cells with T cells and B cells.

Change history

  • 25 June 2013

    In the version of this article initially published, an arrow was incorrectly included between the MPP2 cell and CD4+ cell in the top row of Figure 2. The correct figure has no arrow there. The error has been corrected in the HTML and PDF versions of the article.

References

  1. 1

    Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    CAS  Google Scholar 

  2. 2

    Palm, N.W., Rosenstein, R.K. & Medzhitov, R. Allergic host defences. Nature 484, 465–472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Paul, W.E. & Zhu, J. How are TH2-type immune responses initiated and amplified? Nat. Rev. Immunol. 10, 225–235 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Pulendran, B. & Artis, D. New paradigms in type 2 immunity. Science 337, 431–435 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Zhu, J., Yamane, H. & Paul, W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Zhou, B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat. Immunol. 6, 1047–1053 (2005).

    Article  CAS  Google Scholar 

  7. 7

    Yoo, J. et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med. 202, 541–549 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    He, R. et al. TSLP acts on infiltrating effector T cells to drive allergic skin inflammation. Proc. Natl. Acad. Sci. USA 105, 11875–11880 (2008).

    Article  Google Scholar 

  9. 9

    Saenz, S.A., Taylor, B.C. & Artis, D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol. Rev. 226, 172–190 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Kitajima, M., Lee, H.C., Nakayama, T. & Ziegler, S.F. TSLP enhances the function of helper type 2 cells. Eur. J. Immunol. 41, 1862–1871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Yao, W. et al. Interleukin-9 is required for allergic airway inflammation mediated by the cytokine TSLP. Immunity 38, 360–372 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Angkasekwinai, P. et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204, 1509–1517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Hurst, S.D. et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol. 169, 443–453 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Fort, M.M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    Article  CAS  Google Scholar 

  15. 15

    Dolgachev, V., Petersen, B.C., Budelsky, A.L., Berlin, A.A. & Lukacs, N.W. Pulmonary IL-17E (IL-25) production and IL-17RB+ myeloid cell-derived Th2 cytokine production are dependent upon stem cell factor-induced responses during chronic allergic pulmonary disease. J. Immunol. 183, 5705–5715 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. 16

    Ballantyne, S.J. et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. J. Allergy Clin. Immunol. 120, 1324–1331 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. 17

    Jung, J.S. et al. Association of IL-17RB gene polymorphism with asthma. Chest 135, 1173–1180 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. 18

    Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  Google Scholar 

  19. 19

    Humphreys, N.E., Xu, D., Hepworth, M.R., Liew, F.Y. & Grencis, R.K. IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J. Immunol. 180, 2443–2449 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. 20

    Townsend, M.J., Fallon, P.G., Matthews, D.J., Jolin, H.E. & McKenzie, A.N. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J. Exp. Med. 191, 1069–1076 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Oboki, K. et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc. Natl. Acad. Sci. USA 107, 18581–18586 (2010).

    Article  PubMed  Google Scholar 

  22. 22

    Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Hammad, H. & Lambrecht, B.N. Recent progress in the biology of airway dendritic cells and implications for understanding the regulation of asthmatic inflammation. J. Allergy Clin. Immunol. 118, 331–336 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. 24

    Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    Article  CAS  Google Scholar 

  25. 25

    King, C., Tangye, S.G. & Mackay, C.R. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26, 741–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Veldhoen, M. et al. Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    Article  CAS  Google Scholar 

  27. 27

    Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+IL-10+Foxp3 effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Shimbara, A. et al. IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J. Allergy Clin. Immunol. 105, 108–115 (2000).

    Article  CAS  Google Scholar 

  29. 29

    Erpenbeck, V.J. et al. Segmental allergen challenge in patients with atopic asthma leads to increased IL-9 expression in bronchoalveolar lavage fluid lymphocytes. J. Allergy Clin. Immunol. 111, 1319–1327 (2003).

    Article  CAS  Google Scholar 

  30. 30

    Reinhardt, R.L., Liang, H.E. & Locksley, R.M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Liang, H.E. et al. Divergent expression patterns of IL-4 and IL-13 define unique functions in allergic immunity. Nat. Immunol. 13, 58–66 (2012).

    Article  CAS  Google Scholar 

  32. 32

    Hammad, H. et al. Inflammatory dendritic cells–not basophils–are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J. Exp. Med. 207, 2097–2111 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Gounni, A.S. et al. High-affinity IgE receptor on eosinophils is involved in defence against parasites. Nature 367, 183–186 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. 34

    Li, L. & Krilis, S.A. Mast-cell growth and differentiation. Allergy 54, 306–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. 35

    Kawabori, S., Kanai, N. & Tosho, T. Proliferative activity of mast cells in allergic nasal mucosa. Clin. Exp. Allergy 25, 173–178 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. 36

    Carroll, N.G., Mutavdzic, S. & James, A.L. Distribution and degranulation of airway mast cells in normal and asthmatic subjects. Eur. Respir. J. 19, 879–885 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. 37

    Lantz, C.S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. 38

    Siracusa, M.C. et al. TSLP promotes interleukin-3-independent basophil haematopoiesis and type 2 inflammation. Nature 477, 229–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Siracusa, M.C., Wojno, E.D. & Artis, D. Functional heterogeneity in the basophil cell lineage. Adv. Immunol. 115, 141–159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Foster, P.S., Hogan, S.P., Ramsay, A.J., Matthaei, K.I. & Young, I.G. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med. 183, 195–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. 41

    Mishra, A., Hogan, S.P., Lee, J.J., Foster, P.S. & Rothenberg, M.E. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J. Clin. Invest. 103, 1719–1727 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Rothenberg, M.E. & Hogan, S.P. The eosinophil. Annu. Rev. Immunol. 24, 147–174 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Loke, P. et al. IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol. 3, 7 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  Google Scholar 

  46. 46

    Spits, H. et al. Innate lymphoid cells - a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article  CAS  Google Scholar 

  47. 47

    Fallon, P.G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Moro, K. et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  Google Scholar 

  49. 49

    Price, A.E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA 107, 11489–11494 (2010).

    Article  Google Scholar 

  50. 50

    Koyasu, S. & Moro, K. Role of innate lymphocytes in infection and inflammation. Front. Immunol. 3, 101 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Walker, J.A., Barlow, J.L. & McKenzie, A.N. Innate lymphoid cells — how did we miss them? Nat. Rev. Immunol. 13, 75–87 (2013).

    Article  CAS  Google Scholar 

  52. 52

    Saenz, S.A. et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature 464, 1362–1366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Hoyler, T. et al. The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37, 634–648 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Mjösberg, J. et al. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37, 649–659 (2012).

    Article  CAS  Google Scholar 

  55. 55

    Halim, T.Y. et al. Retinoic-acid-receptor-related orphan nuclear receptor alpha is required for natural helper cell development and allergic inflammation. Immunity 37, 463–474 (2012).

    Article  CAS  Google Scholar 

  56. 56

    Wong, S.H. et al. Transcription factor RORα is critical for nuocyte development. Nat. Immunol. 13, 229–236 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Mjösberg, J.M. et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat. Immunol. 12, 1055–1062 (2011).

    Article  CAS  Google Scholar 

  58. 58

    Barnig, C. et al. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci. Transl. Med. 5, 174ra126 (2013).

    Article  CAS  Google Scholar 

  59. 59

    Kondo, Y. et al. Administration of IL-33 induces airway hyperresponsiveness and goblet cell hyperplasia in the lungs in the absence of adaptive immune system. Int. Immunol. 20, 791–800 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. 60

    Reed, C.E. & Kita, H. The role of protease activation of inflammation in allergic respiratory diseases. J. Allergy Clin. Immunol. 114, 997–1008, quiz 1009 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. 61

    Gregory, L.G. & Lloyd, C.M. Orchestrating house dust mite-associated allergy in the lung. Trends Immunol. 32, 402–411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Halim, T.Y., Krauss, R.H., Sun, A.C. & Takei, F. Lung natural helper cells are a critical source of Th2 cell-type cytokines in protease allergen-induced airway inflammation. Immunity 36, 451–463 (2012).

    Article  CAS  Google Scholar 

  63. 63

    Kim, H.Y. et al. Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J. Allergy Clin. Immunol. 129, 216–227 (2012).

    Article  CAS  Google Scholar 

  64. 64

    Chang, Y.J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631–638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Voehringer, D., Reese, T.A., Huang, X., Shinkai, K. & Locksley, R.M. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med. 203, 1435–1446 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Hsu, C.L., Neilsen, C.V. & Bryce, P.J. IL-33 is produced by mast cells and regulates IgE-dependent inflammation. PLoS ONE 5, e11944 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Kim, B.S. et al. TSLP Elicits IL-33-Independent Innate Lymphoid Cell Responses to Promote Skin Inflammation. Sci. Transl. Med. 5, 170ra116 (2013).

    Article  CAS  Google Scholar 

  68. 68

    Klein Wolterink, R.G. et al. Pulmonary innate lymphoid cells are major producers of IL-5 and IL-13 in murine models of allergic asthma. Eur. J. Immunol. 42, 1106–1116 (2012).

    Article  CAS  Google Scholar 

  69. 69

    Barlow, J.L. et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J. Allergy Clin. Immunol. 129, 191–198 e191–194 (2012).

    Article  CAS  Google Scholar 

  70. 70

    Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12, 1071–1077 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  Google Scholar 

  72. 72

    Fukuoka, A. et al. Identification of a novel type 2 innate immunocyte with the ability to enhance IgE production. Int. Immunol. advance online publication, doi:10.1093/intimm/dxs160 (14 February 2013).

  73. 73

    Zaiss, D.M. et al. Amphiregulin, a TH2 cytokine enhancing resistance to nematodes. Science 314, 1746 (2006).

    Article  CAS  Google Scholar 

  74. 74

    Monticelli, L.A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat. Immunol. 12, 1045–1054 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Allen, J.E. & Maizels, R.M. Diversity and dialogue in immunity to helminths. Nat. Rev. Immunol. 11, 375–388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Molofsky, A.B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Richard A Flavell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Licona-Limón, P., Kim, L., Palm, N. et al. TH2, allergy and group 2 innate lymphoid cells. Nat Immunol 14, 536–542 (2013). https://doi.org/10.1038/ni.2617

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing