Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites

Abstract

The mechanisms by which Lat (a key adaptor in the T cell antigen receptor (TCR) signaling pathway) and the TCR come together after TCR triggering are not well understood. We investigate here the role of SNARE proteins, which are part of protein complexes involved in the docking, priming and fusion of vesicles with opposing membranes, in this process. Here we found, by silencing approaches and genetically modified mice, that the vesicular SNARE VAMP7 was required for the recruitment of Lat-containing vesicles to TCR-activation sites. Our results indicated that this did not involve fusion of Lat-containing vesicles with the plasma membrane. VAMP7, which localized together with Lat on the subsynaptic vesicles, controlled the phosphorylation of Lat, formation of the TCR-Lat-signaling complex and, ultimately, activation of T cells. Our findings suggest that the transport and docking of Lat-containing vesicles with target membranes containing TCRs regulates TCR-induced signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VAMP7 controls the recruitment of Lat to TCR-activation sites.
Figure 2: Recruitment and clustering of Lat in cells depleted of VAMP7.
Figure 3: Subsynaptic vesicles containing Lat do not fuse with the plasma membrane.
Figure 4: Vesicular pools of Lat are decorated with VAMP7 and are recruited to the immunological synapse.
Figure 5: VAMP7 controls Lat phosphorylation after T cell activation.
Figure 6: VAMP7 controls the TCR-induced activation of T cells.
Figure 7: VAMP7 controls the formation of Lat signalosomes.

Similar content being viewed by others

References

  1. Weiss, A. & Littman, D.R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, W., Trible, R.P. & Samelson, L.E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Rudd, C.E. Adaptors and molecular scaffolds in immune cell signaling. Cell 96, 5–8 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Bunnell, S.C., Kapoor, V., Trible, R.P., Zhang, W. & Samelson, L.E. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14, 315–329 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Bonello, G. et al. Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment. J. Cell Sci. 117, 1009–1016 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, W. et al. Essential role of LAT in T cell development. Immunity 10, 323–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R.P. & Samelson, L.E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Mingueneau, M. et al. Loss of the LAT adaptor converts antigen-responsive T cells into pathogenic effectors that function independently of the T cell receptor. Immunity 31, 197–208 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Roncagalli, R. et al. Lymphoproliferative disorders involving T helper effector cells with defective LAT signalosomes. Semin. Immunopathol. 32, 117–125 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Lillemeier, B.F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Purbhoo, M.A. et al. Dynamics of subsynaptic vesicles and surface microclusters at the immunological synapse. Sci. Signal. 3, ra36 (2010).

    Article  PubMed  CAS  Google Scholar 

  12. Williamson, D.J. et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat. Immunol. 12, 655–662 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Südhof, T.C. The synaptic vesicle cycle revisited. Neuron 28, 317–320 (2000).

    Article  PubMed  Google Scholar 

  14. Risselada, H.J. & Grubmuller, H. How SNARE molecules mediate membrane fusion: recent insights from molecular simulations. Curr. Opin. Struct. Biol. 22, 187–196 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Proux-Gillardeaux, V., Rudge, R. & Galli, T. The tetanus neurotoxin-sensitive and insensitive routes to and from the plasma membrane: fast and slow pathways? Traffic 6, 366–373 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Danglot, L. et al. Absence of TI-VAMP/Vamp7 leads to increased anxiety in mice. J. Neurosci. 32, 1962–1968 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McMahon, H.T. et al. Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364, 346–349 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Chaineau, M., Danglot, L. & Galli, T. Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking. FEBS Lett. 583, 3817–3826 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, W. et al. Association of Grb2, Gads, and phospholipase C-γ1 with phosphorylated LAT tyrosine residues. Effect of LAT tyrosine mutations on T cell angigen receptor-mediated signaling. J. Biol. Chem. 275, 23355–23361 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Asada, H. et al. Grf40, A novel Grb2 family member, is involved in T cell signaling through interaction with SLP-76 and LAT. J. Exp. Med. 189, 1383–1390 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Harder, T. & Kuhn, M. Selective accumulation of raft-associated membrane protein LAT in T cell receptor signaling assemblies. J. Cell Biol. 151, 199–208 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rao, S.K., Huynh, C., Proux-Gillardeaux, V., Galli, T. & Andrews, N.W. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J. Biol. Chem. 279, 20471–20479 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Holt, O.J., Gallo, F. & Griffiths, G.M. Regulating secretory lysosomes. J. Biochem. 140, 7–12 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Das, V. et al. Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes. Immunity 20, 577–588 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Danglot, L. et al. Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling. J. Cell Sci. 123, 723–735 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Braun, V. et al. TI-VAMP/VAMP7 is required for optimal phagocytosis of opsonised particles in macrophages. EMBO J. 23, 4166–4176 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mollinedo, F. et al. Combinatorial SNARE complexes modulate the secretion of cytoplasmic granules in human neutrophils. J. Immunol. 177, 2831–2841 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Sander, L.E. et al. Vesicle associated membrane protein (VAMP)-7 and VAMP-8, but not VAMP-2 or VAMP-3, are required for activation-induced degranulation of mature human mast cells. Eur. J. Immunol. 38, 855–863 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Marcet-Palacios, M. et al. Vesicle-associated membrane protein 7 (VAMP-7) is essential for target cell killing in a natural killer cell line. Biochem. Biophys. Res. Commun. 366, 617–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Douglass, A.D. & Vale, R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sherman, E. et al. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35, 705–720 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Balagopalan, L. et al. c-Cbl-mediated regulation of LAT-nucleated signaling complexes. Mol. Cell Biol. 27, 8622–8636 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vardhana, S., Choudhuri, K., Varma, R. & Dustin, M.L. Essential role of ubiquitin and TSG101 protein in formation and function of the central supramolecular activation cluster. Immunity 32, 531–540 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alonso, R. et al. Diacylglycerol kinase α regulates the formation and polarisation of mature multivesicular bodies involved in the secretion of Fas ligand-containing exosomes in T lymphocytes. Cell Death Differ. 18, 1161–1173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kupfer, A., Dennert, G. & Singer, S.J. Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets. Proc. Natl. Acad. Sci. USA 80, 7224–7228 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alcover, A. & Alarcon, B. Internalization and intracellular fate of TCR-CD3 complexes. Crit. Rev. Immunol. [In Process Citation] 20, 325–346 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Chaturvedi, A., Martz, R., Dorward, D., Waisberg, M. & Pierce, S.K. Endocytosed BCRs sequentially regulate MAPK and Akt signaling pathways from intracellular compartments. Nat. Immunol. 12, 1119–1126 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burgo, A. et al. A Molecular network for the transport of the TI-VAMP/VAMP7 vesicles from cell center to periphery. Dev. Cell 23, 166–180 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Martín-Cófreces, N.B. et al. End-binding protein 1 controls signal propagation from the T cell receptor. EMBO J. 31, 4140–4152 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Antón, O.M., Andres-Delgado, L., Reglero-Real, N., Batista, A. & Alonso, M.A. MAL protein controls protein sorting at the supramolecular activation cluster of human T lymphocytes. J. Immunol. 186, 6345–6356 (2011).

    Article  PubMed  CAS  Google Scholar 

  41. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M.L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Babich, A. et al. F-actin polymerization and retrograde flow drive sustained PLCgamma1 signaling during T cell activation. J. Cell Biol. 197, 775–787 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chemin, K. et al. Cytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity. J. Immunol. 189, 2159–2168 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Rak, G.D., Mace, E.M., Banerjee, P.P., Svitkina, T. & Orange, J.S. Natural killer cell lytic granule secretion occurs through a pervasive actin network at the immune synapse. PLoS Biol. 9, e1001151 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brown, A.C. et al. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy. PLoS Biol. 9, e1001152 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Husson, J., Chemin, K., Bohineust, A., Hivroz, C. & Henry, N. Force generation upon T cell receptor engagement. PLoS ONE 6, e19680 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blanchard, N., Di Bartolo, V. & Hivroz, C. In the immune synapse, ZAP-70 controls T cell polarization and recruitment of signaling proteins but not formation of the synaptic pattern. Immunity 17, 389–399 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Martinez-Arca, S., Alberts, P., Zahraoui, A., Louvard, D. & Galli, T. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth. J. Cell Biol. 149, 889–900 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Owen, D.M. et al. PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J. Biophotonics 3, 446–454 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Benvenuti, F. et al. Dendritic cell maturation controls adhesion, synapse formation, and the duration of the interactions with naive T lymphocytes. J. Immunol. 172, 292–301 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A.-M. Lennon and S. Amigorena for discussions; and P. Pierobon, V. Fraisier, P. Paul-Gilloteaux, L. Sengmanivong and the Nikon Imaging Centre at Institut Curie (Centre National de la Recherche Scientifique) for technical assistance with microscopy and image analysis. Supported by Fondation pour la Recherche Médicale (P.L. and K.C., and T.G.'s group), la Ligue contre le Cancer (J.-M.C. and A.B.), DC-Biol Labex (C.H.'s group), Institut National de la Santé et de la Recherche Médicale (T.G.'s group) and the Mairie de Paris Medical Research and Health Program (T.G.'s group).

Author information

Authors and Affiliations

Authors

Contributions

P.L. designed, did and analyzed three-dimensional microscopy, TIRF microscopy and biochemistry experiments, and prepared the manuscript; D.J.W. designed, did and analyzed PALM experiments and revised the manuscript; J.-M.C. did and analyzed experiments with mouse T cells; S.D. designed vectors for and did mice genotyping; K.C. and A.B. designed and analyzed three-dimensional microscopy experiments; L.D. and T.G. provided VAMP7-deficient mice and tools; K.G. designed PALM experiments and assisted with manuscript preparation; T.G. designed VAMP7-deficient mice, discussed the results and revised the manuscript; and C.H. conceived of the study, did biochemistry experiments and prepared manuscript.

Corresponding author

Correspondence to Claire Hivroz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 3445 kb)

Supplementary Video 1

Lat subsynaptic vesicles are recruited to the immunological synapse in activated control Jurkat cells. Time lapse TIRF microscopy images of Lat-GFP expressing Jurkat cells infected with a control shRNA encoding lentiviruses put on glass slides coated with anti-CD3 and anti-CD28 mAbs. (AVI 3503 kb)

Supplementary Video 2

VAMP7 silencing inhibits the recruitment of Lat subsynaptic vesicles to the immunological synapse. Time lapse TIRF microscopy images of Lat-GFP expressing Jurkat cells infected with the VAMP7 specific Sh1RNA encoding lentiviruses put on glass slides coated with anti-CD3 and anti-CD28 mAbs. (AVI 4789 kb)

Supplementary Video 3

VAMP7 silencing inhibits the recruitment of Lat subsynaptic vesicles to the immunological synapse. Time lapse TIRF microscopy images of Lat-GFP expressing Jurkat cells infected with the VAMP7 specific Sh5RNA encoding lentiviruses put on glass slides coated with anti-CD3 and anti-CD28 mAbs. (AVI 2722 kb)

Supplementary Video 4

Lat subsynaptic vesicles recruited to the immunological synapse contain VAMP7.Time-lapse TIRF microscopy images of Jurkat cells co-transfected with Lat-mCherry (magenta) and GFP-VAMP7 (green) put on glass slides coated with anti-CD3 and anti-anti-CD28 mAbs. Left: GFP-VAMP7, middle: Lat-mCherry, right: merge. (AVI 6222 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larghi, P., Williamson, D., Carpier, JM. et al. VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites. Nat Immunol 14, 723–731 (2013). https://doi.org/10.1038/ni.2609

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2609

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing