Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deficiency in IL-17-committed Vγ4+ γδ T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis

Abstract

Interleukin 17 (IL-17)-committed γδ T cells (γδT17 cells) participate in many immune responses, but their developmental requirements and subset specific functions remain poorly understood. Here we report that a commonly used CD45.1+ congenic C57BL/6 mouse substrain is characterized by selective deficiency in Vγ4+ γδT17 cells. This trait was due to a spontaneous mutation in the gene encoding the transcription factor Sox13 that caused an intrinsic defect in development of those cells in the neonatal thymus. The γδT17 cells migrated from skin to lymph nodes at low rates. In a model of psoriasis-like dermatitis, the Vγ4+ γδT17 cell subset expanded considerably in lymph nodes and homed to inflamed skin. Sox13-mutant mice were protected from psoriasis-like skin changes, which identified a role for Sox13-dependent γδT17 cells in this inflammatory condition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B6.SJL/NCI and SJL/Tac mice lack Vγ4+ γδT17 cells.
Figure 2: Deficiency in Vγ4+ γδT17 cells is an autosomal recessive trait controlled by a single locus.
Figure 3: B6.SJL/NCI and SJL/Tac mice have a frameshift mutation in Sox13.
Figure 4: Sox13 intrinsically regulates the development of Vγ4+ γδT17 cells.
Figure 5: The development of Vγ4+ γδT17 cells is blocked in the neonatal thymus in Sox13mut/mut mice.
Figure 6: Sox13mut/mut (B6.SJL/NCI) mice are protected from psoriasis-like dermatitis.
Figure 7: Migration of γδT17 cells from skin to draining lymph nodes at a low rate.
Figure 8: Expansion of the Vγ4+ γδT17 cell subset in draining lymph nodes and homing to inflamed ear skin.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

References

  1. Price, A.E., Reinhardt, R.L., Liang, H.E. & Locksley, R.M. Marking and quantifying IL-17A-producing cells in vivo. PLoS ONE 7, e39750 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Sutton, C.E. et al. Interleukin-1 and IL-23 induce innate IL-17 production from γδ T cells, amplifying Th17 responses and autoimmunity. Immunity 31, 331–341 (2009).

    CAS  PubMed  Google Scholar 

  3. Roark, C.L. et al. Exacerbation of collagen-induced arthritis by oligoclonal, IL-17-producing γδ T cells. J. Immunol. 179, 5576–5583 (2007).

    CAS  PubMed  Google Scholar 

  4. Cai, Y. et al. Pivotal role of dermal IL-17-producing γδ T cells in skin inflammation. Immunity 35, 596–610 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mabuchi, T., Takekoshi, T. & Hwang, S.T. Epidermal CCR6+ γδ T cells are major producers of IL-22 and IL-17 in a murine model of psoriasiform dermatitis. J. Immunol. 187, 5026–5031 (2011).

    CAS  PubMed  Google Scholar 

  6. Pantelyushin, S. et al. Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice. J. Clin. Invest. 122, 2252–2256 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Shibata, K., Yamada, H., Hara, H., Kishihara, K. & Yoshikai, Y. Resident Vδ1+ γδ T cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J. Immunol. 178, 4466–4472 (2007).

    CAS  PubMed  Google Scholar 

  8. Cho, J.S. et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Invest. 120, 1762–1773 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Martin, B., Hirota, K., Cua, D.J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).

    CAS  PubMed  Google Scholar 

  10. Heilig, J.S. & Tonegawa, S. Diversity of murine γ genes and expression in fetal and adult T lymphocytes. Nature 322, 836–840 (1986).

    CAS  PubMed  Google Scholar 

  11. Havran, W.L. & Allison, J.P. Developmentally ordered appearance of thymocytes expressing different T-cell antigen receptors. Nature 335, 443–445 (1988).

    CAS  PubMed  Google Scholar 

  12. Ito, K. et al. Different γδ T-cell receptors are expressed on thymocytes at different stages of development. Proc. Natl. Acad. Sci. USA 86, 631–635 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Kisielow, J., Kopf, M. & Karjalainen, K. SCART scavenger receptors identify a novel subset of adult γδ T cells. J. Immunol. 181, 1710–1716 (2008).

    CAS  PubMed  Google Scholar 

  14. Haas, J.D. et al. Development of interleukin-17-producing γδ T cells is restricted to a functional embryonic wave. Immunity 37, 48–59 (2012).

    CAS  PubMed  Google Scholar 

  15. Melichar, H.J. et al. Regulation of γδ versus αβ T lymphocyte differentiation by the transcription factor SOX13. Science 315, 230–233 (2007).

    CAS  PubMed  Google Scholar 

  16. Turchinovich, G. & Hayday, A.C. Skint-1 identifies a common molecular mechanism for the development of interferon-γ-secreting versus interleukin-17-secreting γδ T cells. Immunity 35, 59–68 (2011).

    CAS  PubMed  Google Scholar 

  17. Narayan, K. et al. Intrathymic programming of effector fates in three molecularly distinct γδ T cell subtypes. Nat. Immunol. 13, 511–518 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Haas, J.D. et al. CCR6 and NK1.1 distinguish between IL-17A and IFN-γ-producing γδ effector T cells. Eur. J. Immunol. 39, 3488–3497 (2009).

    CAS  PubMed  Google Scholar 

  19. Gray, E.E., Suzuki, K. & Cyster, J.G. Cutting edge: identification of a motile IL-17-producing γδ T cell population in the dermis. J. Immunol. 186, 6091–6095 (2011).

    CAS  PubMed  Google Scholar 

  20. Gray, E.E., Friend, S., Suzuki, K., Phan, T.G. & Cyster, J.G. Subcapsular sinus macrophage fragmentation and CD169+ bleb acquisition by closely associated IL-17-committed innate-like lymphocytes. PLoS ONE 7, e38258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen, F.W. et al. Cloning of Ly-5 cDNA. Proc. Natl. Acad. Sci. USA 82, 7360–7363 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kido, S. et al. Cloning and characterization of mouse mSox13 cDNA. Gene 208, 201–206 (1998).

    CAS  PubMed  Google Scholar 

  23. Roose, J. et al. The Sox-13 gene: structure, promoter characterization, and chromosomal localization. Genomics 57, 301–305 (1999).

    CAS  PubMed  Google Scholar 

  24. Brogna, S. & Wen, J. Nonsense-mediated mRNA decay (NMD) mechanisms. Nat. Struct. Mol. Biol. 16, 107–113 (2009).

    CAS  PubMed  Google Scholar 

  25. Sumaria, N. et al. Cutaneous immunosurveillance by self-renewing dermal γδ T cells. J. Exp. Med. 208, 505–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shibata, K. et al. Identification of CD25+ γδ T cells as fetal thymus-derived naturally occurring IL-17 producers. J. Immunol. 181, 5940–5947 (2008).

    CAS  PubMed  Google Scholar 

  27. Michel, M.L. et al. Interleukin 7 (IL-7) selectively promotes mouse and human IL-17-producing γδ cells. Proc. Natl. Acad. Sci. USA 109, 17549–17554 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. van der Fits, L. et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J. Immunol. 182, 5836–5845 (2009).

    CAS  PubMed  Google Scholar 

  29. Nowotschin, S. & Hadjantonakis, A.K. Use of KikGR a photoconvertible green-to-red fluorescent protein for cell labeling and lineage analysis in ES cells and mouse embryos. BMC Dev. Biol. 9, 49 (2009).

    PubMed  PubMed Central  Google Scholar 

  30. Tomura, M. et al. Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J. Clin. Invest. 120, 883–893 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bromley, S.K., Yan, S., Tomura, M., Kanagawa, O. & Luster, A.D. Recirculating memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. J. Immunol. 190, 970–976 (2012).

    PubMed  Google Scholar 

  32. Tomura, M. et al. Monitoring cellular movement in vivo with photoconvertible fluorescence protein “Kaede” transgenic mice. Proc. Natl. Acad. Sci. USA 105, 10871–10876 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sallusto, F. et al. Switch in chemokine receptor expression upon TCR stimulation reveals novel homing potential for recently activated T cells. Eur. J. Immunol. 29, 2037–2045 (1999).

    CAS  PubMed  Google Scholar 

  34. Kreslavsky, T., Garbe, A.I., Krueger, A. & von Boehmer, H. T cell receptor-instructed αβ versus γδ lineage commitment revealed by single-cell analysis. J. Exp. Med. 205, 1173–1186 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lauritsen, J.P. et al. Marked induction of the helix-loop-helix protein Id3 promotes the γδ T cell fate and renders their functional maturation Notch independent. Immunity 31, 565–575 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Verbeek, S. et al. An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374, 70–74 (1995).

    CAS  PubMed  Google Scholar 

  37. Yu, Q., Sharma, A., Ghosh, A. & Sen, J.M. T cell factor-1 negatively regulates expression of IL-17 family of cytokines and protects mice from experimental autoimmune encephalomyelitis. J. Immunol. 186, 3946–3952 (2011).

    CAS  PubMed  Google Scholar 

  38. Ma, J., Wang, R., Fang, X., Ding, Y. & Sun, Z. Critical role of TCF-1 in repression of the IL-17 gene. PLoS ONE 6, e24768 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Do, J.S. et al. Cutting edge: spontaneous development of IL-17-producing γδ T cells in the thymus occurs via a TGF-β1-dependent mechanism. J. Immunol. 184, 1675–1679 (2010).

    CAS  PubMed  Google Scholar 

  40. Van Rhijn, I. et al. Massive, sustained γδ T cell migration from the bovine skin in vivo. J. Leukoc. Biol. 81, 968–973 (2007).

    CAS  PubMed  Google Scholar 

  41. Hedrick, M.N. et al. CCR6 is required for IL-23-induced psoriasis-like inflammation in mice. J. Clin. Invest. 119, 2317–2329 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    CAS  PubMed  Google Scholar 

  43. Wohler, J.E., Smith, S.S., Zinn, K.R., Bullard, D.C. & Barnum, S.R. γδ T cells in EAE: early trafficking events and cytokine requirements. Eur. J. Immunol. 39, 1516–1526 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gilliet, M. et al. Psoriasis triggered by toll-like receptor 7 agonist imiquimod in the presence of dermal plasmacytoid dendritic cell precursors. Arch. Dermatol. 140, 1490–1495 (2004).

    CAS  PubMed  Google Scholar 

  45. Laggner, U. et al. Identification of a novel proinflammatory human skin-homing V γ9Vδ2 T cell subset with a potential role in psoriasis. J. Immunol. 187, 2783–2793 (2011).

    CAS  PubMed  Google Scholar 

  46. Kishihara, K. et al. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74, 143–156 (1993).

    CAS  PubMed  Google Scholar 

  47. Phan, T.G., Green, J.A., Gray, E.E., Xu, Y. & Cyster, J.G. Immune complex relay by subcapsular sinus macrophages and noncognate B cells drives antibody affinity maturation. Nat. Immunol. 10, 786–793 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tortola, L. et al. Psoriasiform dermatitis is driven by IL-36-mediated DC-keratinocyte crosstalk. J. Clin. Invest. 122, 3965–3976 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    CAS  PubMed  Google Scholar 

  50. Zebedee, S.L., Barritt, D.S. & Raschke, W.C. Comparison of mouse Ly5a and Ly5b leucocyte common antigen alleles. Dev. Immunol. 1, 243–254 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A.-K. Hadjantonakis and S. Nowotschin (Memorial Sloan-Kettering) for making KikGR mice available; A. Weiss and K. Skrzypczynska (University of California San Francisco) for Ptprc−/− mice; L. Coussens (University of California San Francisco and Oregon Health Sciences University) for FVB/N mice; Q. Tang and A. Mahne (University of California San Francisco) for mice of the nonobese diabetic strain; A. Reboldi, Y. Han and J. Kang for discussions; and J. An for technical assistance. Supported by the US National Institutes of Health (T32 AR007175 to F.R.-V., and AI045073 to J.G.C.), the Dermatology Foundation (F.R.V.), the Biomedical Research Council (06/1/22/19/469 to Z.W. and K.E.K.) and the Howard Hughes Medical Institute (J.G.C.).

Author information

Authors and Affiliations

Authors

Contributions

E.E.G., F.R.-V. and J.G.C. designed the experiments; E.E.G. did most of the experiments; F.R.-V. and E.E.G. did the psoriasis experiments; Y.X. and S.W. did the gene-expression analysis; Z.W. and K.E.K. provided the antibody to SCART2; E.E.G., F.R.-V. and J.G.C. analyzed the data; and E.E.G. and J.G.C. wrote the paper.

Corresponding author

Correspondence to Jason G Cyster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–4 (PDF 2305 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, E., Ramírez-Valle, F., Xu, Y. et al. Deficiency in IL-17-committed Vγ4+ γδ T cells in a spontaneous Sox13-mutant CD45.1+ congenic mouse substrain provides protection from dermatitis. Nat Immunol 14, 584–592 (2013). https://doi.org/10.1038/ni.2585

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2585

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing