Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment

Abstract

How hematopoietic stem cells (HSCs) coordinate the regulation of opposing cellular mechanisms such as self-renewal and differentiation commitment remains unclear. Here we identified the transcription factor and chromatin remodeler Satb1 as a critical regulator of HSC fate. HSCs lacking Satb1 had defective self-renewal, were less quiescent and showed accelerated lineage commitment, which resulted in progressive depletion of functional HSCs. The enhanced commitment was caused by less symmetric self-renewal and more symmetric differentiation divisions of Satb1-deficient HSCs. Satb1 simultaneously repressed sets of genes encoding molecules involved in HSC activation and cellular polarity, including Numb and Myc, which encode two key factors for the specification of stem-cell fate. Thus, Satb1 is a regulator that promotes HSC quiescence and represses lineage commitment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Satb1 is expressed in HSCs and is critical for the long-term–repopulation ability of HSCs.
Figure 2: Satb1 deficiency leads to less HSC quiescence.
Figure 3: Satb1 deficiency results in the generation of more MPPs and colony-initiating cells from the HSC compartment.
Figure 4: Satb1−/− HSCs show greater differentiation commitment, a loss of symmetric self-renewal and more symmetric differentiation divisions.
Figure 5: Inhibition of enhanced c-Myc activity restores the enhanced differentiation commitment of Satb1−/− HSCs to wild-type rates.
Figure 6: Epigenetic alterations in Satb1−/− HSCs.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Till, J.E. & McCulloch, E.A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 175, 145–149 (1961).

    Article  CAS  Google Scholar 

  2. Becker, A.J., McCulloch, E.A. & Till, J.E. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197, 452–454 (1963).

    Article  CAS  PubMed  Google Scholar 

  3. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Seita, J. & Weissman, I.L. Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip. Rev. Syst. Biol. Med. 2, 640–653 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zeng, H., Yucel, R., Kosan, C., Klein-Hitpass, L. & Moroy, T. Transcription factor Gfi1 regulates self-renewal and engraftment of hematopoietic stem cells. EMBO J. 23, 4116–4125 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Perry, J.M. & Li, L. Self-renewal versus transformation: Fbxw7 deletion leads to stem cell activation and leukemogenesis. Genes Dev. 22, 1107–1109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Antonchuk, J., Sauvageau, G. & Humphries, R.K. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109, 39–45 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Chang, K.C. et al. Interplay between the transcription factor Zif and aPKC regulates neuroblast polarity and self-renewal. Dev. Cell 19, 778–785 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Scheel, C. et al. Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast. Cell 145, 926–940 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bröske, A.M. et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat. Genet. 41, 1207–1215 (2009).

    Article  PubMed  CAS  Google Scholar 

  11. Sun, Y., Hu, J., Zhou, L., Pollard, S.M. & Smith, A. Interplay between FGF2 and BMP controls the self-renewal, dormancy and differentiation of rat neural stem cells. J. Cell Sci. 124, 1867–1877 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Alvarez, J.D. et al. The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev. 14, 521–535 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yasui, D., Miyano, M., Cai, S., Varga-Weisz, P. & Kohwi-Shigematsu, T. SATB1 targets chromatin remodelling to regulate genes over long distances. Nature 419, 641–645 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Beyer, M. et al. Repression of the genome organizer SATB1 in regulatory T cells is required for suppressive function and inhibition of effector differentiation. Nat. Immunol. 12, 898–907 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Steidl, U. et al. A distal single nucleotide polymorphism alters long-range regulation of the PU.1 gene in acute myeloid leukemia. J. Clin. Invest. 117, 2611–2620 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Savarese, F. et al. Satb1 and Satb2 regulate embryonic stem cell differentiation and Nanog expression. Genes Dev. 23, 2625–2638 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Han, H.J., Russo, J., Kohwi, Y. & Kohwi-Shigematsu, T. SATB1 reprogrammes gene expression to promote breast tumour growth and metastasis. Nature 452, 187–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Lakshminarayana Reddy, C.N., Vyjayanti, V.N., Notani, D., Galande, S. & Kotamraju, S. Down-regulation of the global regulator SATB1 by statins in COLO205 colon cancer cells. Mol. Med. Rep. 3, 857–861 (2010).

    CAS  PubMed  Google Scholar 

  19. Selinger, C.I. et al. Loss of special AT-rich binding protein 1 expression is a marker of poor survival in lung cancer. J. Thorac. Oncol. 6, 1179–1189 (2011).

    Article  PubMed  Google Scholar 

  20. Cai, S., Han, H.J. & Kohwi-Shigematsu, T. Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat. Genet. 34, 42–51 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Cai, S., Lee, C.C. & Kohwi-Shigematsu, T. SATB1 packages densely looped, transcriptionally active chromatin for coordinated expression of cytokine genes. Nat. Genet. 38, 1278–1288 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Challen, G.A., Boles, N., Lin, K.K. & Goodell, M.A. Mouse hematopoietic stem cell identification and analysis. Cytometry A 75, 14–24 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Matsumoto, A. et al. P57 is Required for Quiescence and Maintenance of Adult Hematopoietic Stem Cells. Cell Stem Cell 9, 262–271 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Passegué, E., Wagers, A.J., Giuriato, S., Anderson, W.C. & Weissman, I.L. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202, 1599–1611 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Takizawa, H., Regoes, R.R., Boddupalli, C.S., Bonhoeffer, S. & Manz, M.G. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J. Exp. Med. 208, 273–284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Morita, Y., Ema, H. & Nakauchi, H. Heterogeneity and hierarchy within the most primitive hematopoietic stem cell compartment. J. Exp. Med. 207, 1173–1182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kharas, M.G. et al. Musashi-2 regulates normal hematopoiesis and promotes aggressive myeloid leukemia. Nat. Med. 16, 903–908 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, M. et al. Imaging hematopoietic precursor division in real time. Cell Stem Cell 1, 541–554 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rhyu, M.S., Jan, L.Y. & Jan, Y.N. Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76, 477–491 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Spana, E.P. & Doe, C.Q. Numb antagonizes Notch signaling to specify sibling neuron cell fates. Neuron 17, 21–26 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Rebeiz, M., Miller, S.W. & Posakony, J.W. Notch regulates numb: integration of conditional and autonomous cell fate specification. Development 138, 215–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zeller, K.I. et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc. Natl. Acad. Sci. USA 103, 17834–17839 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huang, M.J., Cheng, Y.C., Liu, C.R., Lin, S. & Liu, H.E. A small-molecule c-Myc inhibitor, 10058–F4, induces cell-cycle arrest, apoptosis, and myeloid differentiation of human acute myeloid leukemia. Exp. Hematol. 34, 1480–1489 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Delmore, J.E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pinto do, O.P., Kolterud, A. & Carlsson, L. Expression of the LIM-homeobox gene LH2 generates immortalized steel factor-dependent multipotent hematopoietic precursors. EMBO J. 17, 5744–5756 (1998).

    Article  CAS  Google Scholar 

  38. Mahmoudi, T. et al. The kinase TNIK is an essential activator of Wnt target genes. EMBO J. 28, 3329–3340 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fazzio, T.G., Huff, J.T. & Panning, B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell 134, 162–174 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Miyazaki, M. et al. The opposing roles of the transcription factor E2A and its antagonist Id3 that orchestrate and enforce the naive fate of T cells. Nat. Immunol. 12, 992–1001 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wontakal, S.N. et al. A large gene network in immature erythroid cells is controlled by the myeloid and B cell transcriptional regulator PU.1. PLoS Genet. 7, e1001392.1–15 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nerlov, C. & Graf, T.P.U. 1 induces myeloid lineage commitment in multipotent hematopoietic progenitors. Genes Dev. 12, 2403–2412 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Orford, K.W. & Scadden, D.T. Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat. Rev. Genet. 9, 115–128 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804–1808 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Massagué, J. G1 cell-cycle control and cancer. Nature 432, 298–306 (2004).

    Article  PubMed  CAS  Google Scholar 

  46. Xi, R. & Xie, T. Stem cell self-renewal controlled by chromatin remodeling factors. Science 310, 1487–1489 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Reavie, L. et al. Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex. Nat. Immunol. 11, 207–215 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Santaguida, M. et al. JunB protects against myeloid malignancies by limiting hematopoietic stem cell proliferation and differentiation without affecting self-renewal. Cancer Cell 15, 341–352 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Klinakis, A. et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 473, 230–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, Q.Q. et al. Overexpression and involvement of special AT-rich sequence binding protein 1 in multidrug resistance in human breast carcinoma cells. Cancer Sci. 101, 80–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Kossenkov, A.V. & Ochs, M.F. Matrix factorization for recovery of biological processes from microarray data. Methods Enzymol. 467, 59–77 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Maggio-Price, L., Wolf, N.S., Priestley, G.V., Pietrzyk, M.E. & Bernstein, S.E. Evaluation of stem cell reserve using serial bone marrow transplantation and competitive repopulation in a murine model of chronic hemolytic anemia. Exp. Hematol. 16, 653–659 (1988).

    CAS  PubMed  Google Scholar 

  53. Szilvassy, S.J., Nicolini, F.E., Eaves, C.J. & Miller, C.L. Quantitation of murine and human hematopoietic stem cells by limiting-dilution analysis in competitively repopulated hosts. Methods Mol. Med. 63, 167–187 (2002).

    PubMed  Google Scholar 

  54. Lyons, A.B. Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J. Immunol. Methods 243, 147–154 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Akalin, A. et al. Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia. PLoS Genet. 8, e1002781 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Krueger, F. & Andrews, S.R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Akalin, A. et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 13, R87 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Kohwi-Shigematsu (Lawrence Berkeley National Laboratory) for Satb1−/− mice; J. Bradner (Dana-Farber Cancer Institute, Harvard Medical School) for JQ1; T. Kohwi-Shigematsu, E. Passegué, M. Alberich-Jordá and the members of the Steidl laboratory for discussions and suggestions; G. Simkin, and S. Narayanagari of the Einstein Human Stem Cell FACS and Xenotransplantation Facility; and P. Schultes, C. Sheridan and the Epigenomics Core Facility of Weill Cornell Medical College for technical assistance. Supported by the American Cancer Society (121366-PF-12-89-01-TBG to B.W.), the Sass Foundation (F.G.B.), the National Cancer Institute (1K08CA169055-01 to F.G.B. and R00CA131503 to U.S.), the US National Institutes of Health (F31CA162770 to U.C.O.-O. and F30HL117545 to A.P.) and New York State Stem Cell Science (C024306, C026416 and C028116 to U.S., and C024172 to E. Bouhassira). U.S. is the Diane and Arthur B. Belfer Faculty Scholar in Cancer Research of the Albert Einstein College of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

B.W. and U.S. designed the study and experiments; B.W., T.O.V., F.G.-B., T.D.B., J.M. and T.I.T. did experiments; B.W., T.O.V., J.M., B.B., F.G.-B., A.P., L.B., U.C.O.-O., R.F.S., T.I.T., M.R., A.V., M.E.F., A.M. and U.S. interpreted experiments; B.B. and L.B. did statistical analysis of microarray data; B.B. and F.G.-B. did statistical analysis of ERRBS data; and B.W. and U.S. wrote the manuscript.

Corresponding author

Correspondence to Ulrich Steidl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Tables 1–6 (PDF 1133 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Will, B., Vogler, T., Bartholdy, B. et al. Satb1 regulates the self-renewal of hematopoietic stem cells by promoting quiescence and repressing differentiation commitment. Nat Immunol 14, 437–445 (2013). https://doi.org/10.1038/ni.2572

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing