Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells

Abstract

Here we identified B cells as a major source of rapid, innate-like production of interleukin 17 (IL-17) in vivo in response to infection with Trypanosoma cruzi. IL-17+ B cells had a plasmablast phenotype, outnumbered cells of the TH17 subset of helper T cells and were required for an optimal response to this pathogen. With both mouse and human primary B cells, we found that exposure to parasite-derived trans-sialidase in vitro was sufficient to trigger modification of the cell-surface mucin CD45, which led to signaling dependent on the kinase Btk and production of IL-17A or IL-17F via a transcriptional program independent of the transcription factors RORγt and Ahr. Our combined data suggest that the generation of IL-17+ B cells may be a previously unappreciated feature of innate immune responses required for pathogen control or IL-17-mediated autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B cells from T. cruzi–infected mice produce IL-17.
Figure 2: B cell production of IL-17A is required for control of infection with T. cruzi.
Figure 3: Exposure to T. cruzi trypomastigotes or purified trans-sialidase is sufficient to trigger B cell production of IL-17.
Figure 4: CD45 and Btk are required for B cell production of IL-17 in response to T. cruzi trypomastigotes or purified trans-sialidase.
Figure 5: RORγt and Ahr are not required for B cell production of IL-17 in response to T. cruzi.
Figure 6: Primary human B cells stimulated with T. cruzi produce IL-17.

Similar content being viewed by others

References

  1. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    CAS  PubMed  Google Scholar 

  2. Gaffen, S.L. Recent advances in the IL-17 cytokine family. Curr. Opin. Immunol. 23, 613–619 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kelly, M.N. et al. Interleukin-17interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect. Immun. 73, 617–621 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pitta, M.G. et al. IL-17 and IL-22 are associated with protection against human kala azar caused by Leishmania donovani. J. Clin. Invest. 119, 2379–2387 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Rudner, X.L., Happel, K.I., Young, E.A. & Shellito, J.E. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect. Immun. 75, 3055–3061 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. da Matta Guedes, P.M. et al. IL-17 produced during Trypanosoma cruzi infection plays a central role in regulating parasite-induced myocarditis. PLoS Negl. Trop. Dis. 4, e604 (2010).

    PubMed  Google Scholar 

  7. Miyazaki, Y. et al. IL-17 is necessary for host protection against acute-phase Trypanosoma cruzi infection. J. Immunol. 185, 1150–1157 (2010).

    CAS  PubMed  Google Scholar 

  8. Mou, Z., Jia, P., Kuriakose, S., Khadem, F. & Uzonna, J.E. Interleukin-17-mediated control of parasitemia in experimental Trypanosoma congolense infection in mice. Infect. Immun. 78, 5271–5279 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tosello Boari, J. et al. IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils. PLoS Pathog. 8, e1002658 (2012).

    PubMed  PubMed Central  Google Scholar 

  10. Cua, D.J. & Tato, C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479–489 (2010).

    CAS  PubMed  Google Scholar 

  11. Bryan, M.A., Guyach, S.E. & Norris, K.A. Specific humoral immunity versus polyclonal B cell activation in Trypanosoma cruzi infection of susceptible and resistant mice. PLoS Negl. Trop. Dis. 4, e733 (2010).

    PubMed  PubMed Central  Google Scholar 

  12. Bermejo, D.A. et al. Trypanosoma cruzi infection induces a massive extrafollicular and follicular splenic B-cell response which is a high source of non-parasite-specific antibodies. Immunology 132, 123–133 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Noelle, R.J., Ledbetter, J.A. & Aruffo, A. CD40 and its ligand, an essential ligand-receptor pair for thymus-dependent B-cell activation. Immunol. Today 13, 431–433 (1992).

    CAS  PubMed  Google Scholar 

  14. Meyer-Bahlburg, A. & Rawlings, D.J. Differential impact of Toll-like receptor signaling on distinct B cell subpopulations. Front. Biosci. 17, 1499–1516 (2012).

    CAS  PubMed Central  Google Scholar 

  15. Rawlings, D.J., Schwartz, M.A., Jackson, S.W. & Meyer-Bahlburg, A. Integration of B cell responses through Toll-like receptors and antigen receptors. Nat. Rev. Immunol. 12, 282–294 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tarleton, R.L. Immune system recognition of Trypanosoma cruzi. Curr. Opin. Immunol. 19, 430–434 (2007).

    CAS  PubMed  Google Scholar 

  17. Minoprio, P., Bandeira, A., Pereira, P., Mota Santos, T. & Coutinho, A. Preferential expansion of Ly-1 B and CD4CD8 T cells in the polyclonal lymphocyte responses to murine T. cruzi infection. Int. Immunol. 1, 176–184 (1989).

    CAS  PubMed  Google Scholar 

  18. Bermejo, D.A. et al. BAFF mediates splenic B cell response and antibody production in experimental Chagas disease. PLoS Negl. Trop. Dis. 4, e679 (2010).

    PubMed  PubMed Central  Google Scholar 

  19. Schenkman, S., Eichinger, D., Pereira, M.E. & Nussenzweig, V. Structural and functional properties of Trypanosoma trans-sialidase. Annu. Rev. Microbiol. 48, 499–523 (1994).

    CAS  PubMed  Google Scholar 

  20. Gao, W., Wortis, H.H. & Pereira, M.A. The Trypanosoma cruzi trans-sialidase is a T cell-independent B cell mitogen and an inducer of non-specific Ig secretion. Int. Immunol. 14, 299–308 (2002).

    CAS  PubMed  Google Scholar 

  21. Alvarez, P., Leguizamon, M.S., Buscaglia, C.A., Pitcovsky, T.A. & Campetella, O. Multiple overlapping epitopes in the repetitive unit of the shed acute-phase antigen from Trypanosoma cruzi enhance its immunogenic properties. Infect. Immun. 69, 7946–7949 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Risso, M.G., Pitcovsky, T.A., Caccuri, R.L., Campetella, O. & Leguizamon, M.S. Immune system pathogenesis is prevented by the neutralization of the systemic trans-sialidase from Trypanosoma cruzi during severe infections. Parasitology 134, 503–510 (2007).

    CAS  PubMed  Google Scholar 

  23. Leguizamón, M.S., Mocetti, E., Garcia Rivello, H., Argibay, P. & Campetella, O. Trans. -sialidase from Trypanosoma cruzi induces apoptosis in cells from the immune system in vivo. J. Infect. Dis. 180, 1398–1402 (1999).

    PubMed  Google Scholar 

  24. Buschiazzo, A. et al. Trypanosoma cruzi trans-sialidase in complex with a neutralizing antibody: structurefunction studies towards the rational design of inhibitors. PLoS Pathog. 8, e1002474 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Muiá, R.P. et al. Identification of glycoproteins targeted by Trypanosoma cruzi trans-sialidase, a virulence factor that disturbs lymphocyte glycosylation. Glycobiology 20, 833–842 (2010).

    PubMed  PubMed Central  Google Scholar 

  26. Mucci, J., Risso, M.G., Leguizamon, M.S., Frasch, A.C. & Campetella, O. The trans-sialidase from Trypanosoma cruzi triggers apoptosis by target cell sialylation. Cell. Microbiol. 8, 1086–1095 (2006).

    CAS  PubMed  Google Scholar 

  27. Kaneko, Y., Nimmerjahn, F. & Ravetch, J.V. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 313, 670–673 (2006).

    CAS  PubMed  Google Scholar 

  28. Kuijf, M.L. et al. TLR4-mediated sensing of Campylobacter jejuni by dendritic cells is determined by sialylation. J. Immunol. 185, 748–755 (2010).

    CAS  PubMed  Google Scholar 

  29. Rabinovich, G.A. & Toscano, M.A. Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9, 338–352 (2009).

    CAS  PubMed  Google Scholar 

  30. Earl, L.A. & Baum, L.G. CD45 glycosylation controls T-cell life and death. Immunol. Cell Biol. 86, 608–615 (2008).

    CAS  PubMed  Google Scholar 

  31. Zuñiga, E., Rabinovich, G.A., Iglesias, M.M. & Gruppi, A. Regulated expression of galectin-1 during B-cell activation and implications for T-cell apoptosis. J. Leukoc. Biol. 70, 73–79 (2001).

    PubMed  Google Scholar 

  32. Acosta-Rodríguez, E.V. et al. Galectin-3 mediates IL-4-induced survival and differentiation of B cells: functional cross-talk and implications during Trypanosoma cruzi infection. J. Immunol. 172, 493–502 (2004).

    PubMed  Google Scholar 

  33. Gao, W. & Pereira, M.A. Trypanosoma cruzi trans-sialidase potentiates T cell activation through antigen-presenting cells: role of IL-6 and Bruton's tyrosine kinase. Eur. J. Immunol. 31, 1503–1512 (2001).

    CAS  PubMed  Google Scholar 

  34. Rawlings, D.J., Sommer, K. & Moreno-Garcia, M.E. The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat. Rev. Immunol. 6, 799–812 (2006).

    CAS  PubMed  Google Scholar 

  35. Moreno-García, M.E., Sommer, K.M., Bandaranayake, A.D. & Rawlings, D.J. Proximal signals controlling B-cell antigen receptor (BCR) mediated NF-κB activation. Adv. Exp. Med. Biol. 584, 89–106 (2006).

    PubMed  Google Scholar 

  36. Dong, C. Genetic controls of Th17 cell differentiation and plasticity. Exp. Mol. Med. 43, 1–6 (2011).

    CAS  PubMed  Google Scholar 

  37. Esser, C., Rannug, A. & Stockinger, B. The aryl hydrocarbon receptor in immunity. Trends Immunol. 30, 447–454 (2009).

    CAS  PubMed  Google Scholar 

  38. Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORgammat+ cells. Science 305, 248–251 (2004).

    CAS  PubMed  Google Scholar 

  39. He, Y.W., Deftos, M.L., Ojala, E.W. & Bevan, M.J. RORγt, a novel isoform of an orphan receptor, negatively regulates Fas ligand expression and IL-2 production in T cells. Immunity 9, 797–806 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hermiston, M.L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).

    CAS  PubMed  Google Scholar 

  41. Hernandez, J.D., Klein, J., Van Dyken, S.J., Marth, J.D. & Baum, L.G. T-cell activation results in microheterogeneous changes in glycosylation of CD45. Int. Immunol. 19, 847–856 (2007).

    CAS  PubMed  Google Scholar 

  42. Andrews, S.F. & Rawlings, D.J. Transitional B cells exhibit a B cell receptor-specific nuclear defect in gene transcription. J. Immunol. 182, 2868–2878 (2009).

    CAS  PubMed  Google Scholar 

  43. Rawlings, D.J. et al. Activation of BTK by a phosphorylation mechanism initiated by SRC family kinases. Science 271, 822–825 (1996).

    CAS  PubMed  Google Scholar 

  44. Rawlings, D.J. Bruton's tyrosine kinase controls a sustained calcium signal essential for B lineage development and function. Clin. Immunol. 91, 243–253 (1999).

    CAS  PubMed  Google Scholar 

  45. Li, L. et al. IL-17 produced by neutrophils regulates IFN-γ-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest. 120, 331–342 (2010).

    CAS  PubMed  Google Scholar 

  46. Yu, H. et al. A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. J. Am. Chem. Soc. 127, 17618–17619 (2005).

    CAS  PubMed  Google Scholar 

  47. Cheng, J. et al. Multifunctionality of Campylobacter jejuni sialyltransferase CstII: characterization of GD3GT3 oligosaccharide synthase, GD3 oligosaccharide sialidase, and trans-sialidase activities. Glycobiology 18, 686–697 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Gut, H., King, S.J. & Walsh, M.A. Structural and functional studies of Streptococcus pneumoniae neuraminidase B: An intramolecular trans-sialidase. FEBS Lett. 582, 3348–3352 (2008).

    CAS  PubMed  Google Scholar 

  49. Cheng, J. et al. Trans. -sialidase activity of Photobacterium damsela α2,6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 20, 260–268 (2010).

    CAS  PubMed  Google Scholar 

  50. Gutierrez, F.R., Guedes, P.M., Gazzinelli, R.T. & Silva, J.S. The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol. 31, 673–685 (2009).

    CAS  PubMed  Google Scholar 

  51. Norris, K.A., Schrimpf, J.E. & Szabo, M.J. Identification of the gene family encoding the 160-kilodalton Trypanosoma cruzi complement regulatory protein. Infect. Immun. 65, 349–357 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Campetella, O.E., Uttaro, A.D., Parodi, A.J. & Frasch, A.C. A recombinant Trypanosoma cruzi trans-sialidase lacking the amino acid repeats retains the enzymatic activity. Mol. Biochem. Parasitol. 64, 337–340 (1994).

    CAS  PubMed  Google Scholar 

  53. Solt, L.A. et al. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature 472, 491–494 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Norris (University of Pittsburgh) for T. cruzi, Y strain; A. Weiss (University of California at San Francisco) for Cd45−/− mice; G. Sonnenberg (University of Pennsylvania) and D. Artis (University of Pennsylvania) for Il17a−/− mice; O. Campetella (Universidad de San Martín) for the trans-sialidase-neutralizing mAb (hybridoma 13G9); T. Burris (The Scripps Research Institute) for the inhibitor SR1001; N. Scharping and F. Fiocca-Vernengo for technical assistance; K. Sommer and M. Schwartz and other members of the Rawlings laboratory for suggestions and discussions; P. Abadie and MP Crespo for cell sorting; and F. Navarro for animal care in Argentina. Supported by the US National Institutes of Health (HD037091, HL075453, AI084457 and AI071163 to D.J.R.; AI 075589 to O.C.; and 5T32AR007108 and K12HD043376 to S.W.J.), the Rheumatology Research Foundation (S.W.J.), Consejo Nacional de Investigaciones Científicas y Técnicas, Agencia Nacional de Promoción Científica y Tecnológica (Fondo para la Investigación Científica y Tecnológica) and Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (A.G.) and Consejo Nacional de Investigaciones Científicas y Técnicas (D.A.B., M.C.A.-V. and M.G.-S.).

Author information

Authors and Affiliations

Authors

Contributions

D.A.B. did experiments and analyzed the results; S.W.J. did experiments, including cell-transfer studies, immunohistochemistry and additional analyses; M.G.-S. assisted with trypomastigote cultures and studies of T. cruzi–infected μMT mice; M.C.A.-V. did quantitative PCR studies and analysis; B.D.S. established and assisted with human tonsillar assays; A.K.S. did quantitative PCR studies and IL-17-related assays; S.K. assisted with mouse-colony management and cell-transfer experiments; D.L. did and interpreted tissue histopathology studies; J.M. and O.C. provided trans-sialidase and anti-trans-sialidase, and technical and intellectual contributions to assays of sialylation and desialylation; E.V.A.-R. and M.O. contributed to study design and analysis; A.G. and D.J.R. conceived of, designed and supervised the study; S.W.J., E.V.A.-R., A.G. and D.J.R. wrote the manuscript; and all authors reviewed the manuscript before submission.

Corresponding authors

Correspondence to Adriana Gruppi or David J Rawlings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 1672 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bermejo, D., Jackson, S., Gorosito-Serran, M. et al. Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells. Nat Immunol 14, 514–522 (2013). https://doi.org/10.1038/ni.2569

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2569

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing