Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells

An Erratum to this article was published on 19 July 2013

This article has been updated

Abstract

Spleen-resident dendritic cell (DC) populations occupy sentinel positions for the capture and presentation of blood-borne antigens. Here we found a difference in expression of the chemotactic receptor EBI2 (GPR183) on splenic DC subsets and that EBI2 regulated the positioning and homeostasis of DCs in the spleen. EBI2 and its main ligand, 7α,25-OHC, were required for the generation of the splenic CD4+ DC subset and the localization of DCs in bridging channels. Absence of EBI2 from DCs resulted in defects in both the activation of CD4+ T cells and the induction of antibody responses. Regulated expression of EBI2 on DC populations is therefore critical for the generation and correct positioning of splenic DCs and the initiation of immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lower frequency of CD4+ DCs in spleens of EBI2-deficient mice.
Figure 2: EBI2 expression on splenic DCs.
Figure 3: EBI2 mediates the migration of CD4+ DCs toward 7α,25-OHC and the localization of DCs to splenic bridging channels.
Figure 4: Production of 7α,25-OHC is required for the development of CD4+ DCs and localization of DCs in marginal zone bridging channels.
Figure 5: Normal development of splenic CD4+ DCs depends on intrinsic expression of EBI2.
Figure 6: EBI2 is not required for normal development of DC precursors or survival of splenic DCs.
Figure 7: EBI2 expression on DCs is required for normal induction of B cell and T cell responses.

Similar content being viewed by others

Change history

  • 22 April 2013

    In the version of this article initially published, the top graph in Figure 7g was incorrect. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Shortman, K. & Liu, Y.J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161 (2002).

    CAS  PubMed  Google Scholar 

  2. Villadangos, J.A. & Schnorrer, P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol. 7, 543–555 (2007).

    CAS  PubMed  Google Scholar 

  3. Satpathy, A.T., Wu, X., Albring, J.C. & Murphy, K.M. Re(de)fining the dendritic cell lineage. Nat. Immunol. 13, 1145–1154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Pulendran, B., Tang, H. & Denning, T.L. Division of labor, plasticity, and crosstalk between dendritic cell subsets. Curr. Opin. Immunol. 20, 61–67 (2008).

    CAS  PubMed  Google Scholar 

  5. Vremec, D., Pooley, J., Hochrein, H., Wu, L. & Shortman, K. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164, 2978–2986 (2000).

    CAS  PubMed  Google Scholar 

  6. Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107–111 (2007).

    CAS  PubMed  Google Scholar 

  7. Luber, C.A. et al. Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32, 279–289 (2010).

    CAS  PubMed  Google Scholar 

  8. Mount, A.M. et al. Multiple dendritic cell populations activate CD4+ T cells after viral stimulation. PLoS One 3, e1691 (2008).

    PubMed  PubMed Central  Google Scholar 

  9. den Haan, J.M. & Bevan, M.J. Constitutive versus activation-dependent cross-presentation of immune complexes by CD8+ and CD8 dendritic cells in vivo. J. Exp. Med. 196, 817–827 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Pooley, J.L., Heath, W.R. & Shortman, K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8 dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J. Immunol. 166, 5327–5330 (2001).

    CAS  PubMed  Google Scholar 

  11. Chappell, C.P., Draves, K.E., Giltiay, N.V. & Clark, E.A. Extrafollicular B cell activation by marginal zone dendritic cells drives T cell-dependent antibody responses. J. Exp. Med. 209, 1825–1840 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. den Haan, J.M., Lehar, S.M. & Bevan, M.J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Schnorrer, P. et al. The dominant role of CD8+ dendritic cells in cross-presentation is not dictated by antigen capture. Proc. Natl. Acad. Sci. USA 103, 10729–10734 (2006).

    CAS  PubMed  Google Scholar 

  14. Caminschi, I. et al. The dendritic cell subtype-restricted C-type lectin Clec9A is a target for vaccine enhancement. Blood 112, 3264–3273 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Sancho, D. et al. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J. Clin. Invest. 118, 2098–2110 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kabashima, K. et al. Intrinsic lymphotoxin-beta receptor requirement for homeostasis of lymphoid tissue dendritic cells. Immunity 22, 439–450 (2005).

    CAS  PubMed  Google Scholar 

  17. Naik, S.H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7, 663–671 (2006).

    CAS  PubMed  Google Scholar 

  18. Diao, J. et al. In situ replication of immediate dendritic cell (DC) precursors contributes to conventional DC homeostasis in lymphoid tissue. J. Immunol. 176, 7196–7206 (2006).

    CAS  PubMed  Google Scholar 

  19. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat. Immunol. 8, 578–583 (2007).

    CAS  PubMed  Google Scholar 

  20. Belz, G.T. & Nutt, S.L. Transcriptional programming of the dendritic cell network. Nat. Rev. Immunol. 12, 101–113 (2012).

    CAS  PubMed  Google Scholar 

  21. Gunn, M.D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Reis e Sousa, C. et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas. J. Exp. Med. 186, 1819–1829 (1997).

    CAS  PubMed  Google Scholar 

  23. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    CAS  Google Scholar 

  24. Czeloth, N. et al. Sphingosine-1 phosphate signaling regulates positioning of dendritic cells within the spleen. J. Immunol. 179, 5855–5863 (2007).

    CAS  PubMed  Google Scholar 

  25. Hannedouche, S. et al. Oxysterols direct immune cell migration via EBI2. Nature 475, 524–527 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu, C. et al. Oxysterols direct B-cell migration through EBI2. Nature 475, 519–523 (2011).

    CAS  PubMed  Google Scholar 

  27. Yi, T. et al. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity 37, 535–548 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gatto, D., Paus, D., Basten, A., Mackay, C.R. & Brink, R. Guidance of B cells by the orphan G protein-coupled receptor EBI2 shapes humoral immune responses. Immunity 31, 259–269 (2009).

    CAS  PubMed  Google Scholar 

  29. Pereira, J.P., Kelly, L.M., Xu, Y. & Cyster, J.G. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460, 1122–1126 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gatto, D., Wood, K. & Brink, R. EBI2 operates independently of but in cooperation with CXCR5 and CCR7 to direct B cell migration and organization in follicles and the germinal center. J. Immunol. 187, 4621–4628 (2011).

    CAS  PubMed  Google Scholar 

  31. Kelly, L.M., Pereira, J.P., Yi, T., Xu, Y. & Cyster, J.G. EBI2 guides serial movements of activated B cells and ligand activity is detectable in lymphoid and nonlymphoid tissues. J. Immunol. 187, 3026–3032 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shortman, K. & Naik, S.H. Steady-state and inflammatory dendritic-cell development. Nat. Rev. Immunol. 7, 19–30 (2007).

    CAS  PubMed  Google Scholar 

  33. Kamath, A.T. et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J. Immunol. 165, 6762–6770 (2000).

    CAS  PubMed  Google Scholar 

  34. Türeci, O. et al. Cascades of transcriptional induction during dendritic cell maturation revealed by genome-wide expression analysis. FASEB J. 17, 836–847 (2003).

    PubMed  Google Scholar 

  35. Paus, D. et al. Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J. Exp. Med. 203, 1081–1091 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Brink, R., Phan, T.G., Paus, D. & Chan, T.D. Visualizing the effects of antigen affinity on T-dependent B-cell differentiation. Immunol. Cell Biol. 86, 31–39 (2008).

    CAS  PubMed  Google Scholar 

  37. Lahoud, M.H. et al. Signal regulatory protein molecules are differentially expressed by CD8 dendritic cells. J. Immunol. 177, 372–382 (2006).

    CAS  PubMed  Google Scholar 

  38. Garciá De Vinuesa, C. et al. Dendritic cells associated with plasmablast survival. Eur. J. Immunol. 29, 3712–3721 (1999).

    PubMed  Google Scholar 

  39. Ansel, K.M. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles. Nature 406, 309–314 (2000).

    CAS  PubMed  Google Scholar 

  40. Lahoud, M.H. et al. The C-type lectin Clec12A present on mouse and human dendritic cells can serve as a target for antigen delivery and enhancement of antibody responses. J. Immunol. 182, 7587–7594 (2009).

    CAS  PubMed  Google Scholar 

  41. Rosenkilde, M.M. et al. Molecular pharmacological phenotyping of EBI2. An orphan seven-transmembrane receptor with constitutive activity. J. Biol. Chem. 281, 13199–13208 (2006).

    CAS  PubMed  Google Scholar 

  42. Phan, T.G. et al. B cell receptor-independent stimuli trigger immunoglobulin (Ig) class switch recombination and production of IgG autoantibodies by anergic self-reactive B cells. J. Exp. Med. 197, 845–860 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Barnden, M.J., Allison, J., Heath, W.R. & Carbone, F.R. Defective TCR expression in transgenic mice constructed using cDNA-based α- and β-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76, 34–40 (1998).

    CAS  PubMed  Google Scholar 

  44. Caton, M.L., Smith-Raska, M.R. & Reizis, B. Notch-RBP-J signaling controls the homeostasis of CD8 dendritic cells in the spleen. J. Exp. Med. 204, 1653–1664 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Bauman, D.R. et al. 25-Hydroxycholesterol secreted by macrophages in response to Toll-like receptor activation suppresses immunoglobulin A production. Proc. Natl. Acad. Sci. USA 106, 16764–16769 (2009).

    CAS  PubMed  Google Scholar 

  46. Phan, T.G., Gardam, S., Basten, A. & Brink, R. Altered migration, recruitment, and somatic hypermutation in the early response of marginal zone B cells to T cell-dependent antigen. J. Immunol. 174, 4567–4578 (2005).

    CAS  Google Scholar 

  47. Allen, C.D. et al. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 5, 943–952 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the MLC Garvan Flow Cytometry Facility for cell sorting; the staff of Australian Bioresources and the Garvan Institute animal facilities; and J. Villadangos, K. Shortman and S. Tangye for comments on the manuscript. Supported by the National Health and Medical Research Council of Australia (427620 to R.B. and 1003025 to D.G.)

Author information

Authors and Affiliations

Authors

Contributions

D.G. and R.B. conceived of the project and wrote the manuscript; D.G. and K.W. did most of the experiments; I.C. provided antibody to Sirpβ1 and analyzed anti-rat IgG responses; D.M.-D. produced and analyzed cells transfected to express EBI2; P.S. and D.C. organized the production and purification of antibody to EBI2; and G.K. helped analyze responses in EBI2-deficient mice.

Corresponding authors

Correspondence to Dominique Gatto or Robert Brink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 3476 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gatto, D., Wood, K., Caminschi, I. et al. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat Immunol 14, 446–453 (2013). https://doi.org/10.1038/ni.2555

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2555

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing