Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses

A Corrigendum to this article was published on 18 February 2014

This article has been updated

Abstract

Dendritic cells (DCs) are critical in immune responses, linking innate and adaptive immunity. We found here that DC-specific deletion of the transcription factor STAT5 was not critical for development but was required for T helper type 2 (TH2), but not TH1, allergic responses in both the skin and lungs. Loss of STAT5 in DCs led to the inability to respond to thymic stromal lymphopoietin (TSLP). STAT5 was required for TSLP-dependent DC activation, including upregulation of the expression of costimulatory molecules and chemokine production. Furthermore, TH2 responses in mice with DC-specific loss of STAT5 resembled those seen in mice deficient in the receptor for TSLP. Our results show that the TSLP-STAT5 axis in DCs is a critical component for the promotion of type 2 immunity at barrier surfaces.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diminished TH2 CHS Cre+Stat5fl/fl mice.
Figure 2: Normal TH1-type CHS in Cre+Stat5fl/fl mice.
Figure 3: STAT5 is not required in LCs for TH2-type CHS.
Figure 4: TH2- but not TH1-type immune responses in the lungs require STAT5 in DCs.
Figure 5: STAT5 is required for TSLP-induced upregulation of the expression of costimulatory molecules in FL-CD11b-DCs.
Figure 6: TSLP-induced STAT5 in DCs is required for the TH2 differentiation of CD4+ T cells.

Similar content being viewed by others

Change history

  • 23 September 2013

    In the version of this article initially published, author Daniel H. Kaplan was not included. The correct list of authors and affiliations is as follows: 1Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA. 2Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA. 3Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA. 4Center for Immunology, Department of Dermatology, University of Minnesota, Minneapolis, Minnesota, USA. 5Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA. 6Laboratory of Genetics and Physiology, US National Institutes of Health, Bethesda, Maryland, USA. 7These authors contributed equally to this work. Correspondence should be addressed to S.F.Z. (sziegler@benaroyaresearch.org). The Acknowledgments section should not include the first acknowledgement and should begin "We thank I. Förster..."; the Author Contributions section should include Daniel H. Kaplan's contributions as follows: "D.H.K., K.S., K.-U.W., B.R. and L.H. provided mouse strains and expertise;...." The error has been corrected in the HTML and PDF versions of the article.

References

  1. Shortman, K. & Naik, S.H. Steady-state and inflammatory dendritic-cell development. Nat. Rev. Immunol. 7, 19–30 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. McKenna, H.J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489–3497 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Laouar, Y., Welte, T., Fu, X.Y. & Flavell, R.A. STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity 19, 903–912 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Onai, N., Obata-Onai, A., Tussiwand, R., Lanzavecchia, A. & Manz, M.G. Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon-producing and dendritic cell development. J. Exp. Med. 203, 227–238 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Esashi, E. et al. The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 28, 509–520 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schiavoni, G. et al. ICSBP is essential for the development of mouse type I interferon-producing cells and for the generation and activation of CD8α+ dendritic cells. J. Exp. Med. 196, 1415–1425 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zenke, M. & Hieronymus, T. Towards an understanding of the transcription factor network of dendritic cell development. Trends Immunol. 27, 140–145 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Ziegler, S.F. & Artis, D. Sensing the outside world: TSLP regulates barrier immunity. Nat. Immunol. 11, 289–293 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu, Y.J. et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu. Rev. Immunol. 25, 193–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Rochman, Y. et al. Thymic stromal lymphopoietin-mediated STAT5 phosphorylation via kinases JAK1 and JAK2 reveals a key difference from IL-7-induced signaling. Proc. Natl. Acad. Sci. USA 107, 19455–19460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arima, K. et al. Distinct signal codes generate dendritic cell functional plasticity. Sci. Signal. 3, ra4 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Isaksen, D.E. et al. Requirement for stat5 in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 163, 5971–5977 (1999).

    CAS  PubMed  Google Scholar 

  13. Levin, S.D. et al. Thymic stromal lymphopoietin: a cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J. Immunol. 162, 677–683 (1999).

    CAS  PubMed  Google Scholar 

  14. Isaksen, D.E. et al. Uncoupling of proliferation and Stat5 activation in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 168, 3288–3294 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Rochman, Y., Spolski, R. & Leonard, W.J. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kitajima, M., Lee, H.C., Nakayama, T. & Ziegler, S.F. TSLP enhances the function of helper type 2 cells. Eur. J. Immunol. 41, 1862–1871 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Al-Shami, A., Spolski, R., Kelly, J., Keane-Myers, A. & Leonard, W.J. A role for TSLP in the development of inflammation in an asthma model. J. Exp. Med. 202, 829–839 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. He, R. et al. TSLP acts on infiltrating effector T cells to drive allergic skin inflammation. Proc. Natl. Acad. Sci. USA 105, 11875–11880 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Larson, R.P. et al. Dibutyl phthalate-induced thymic stromal lymphopoietin is required for th2 contact hypersensitivity responses. J. Immunol. 184, 2974–2984 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Henri, S. et al. Disentangling the complexity of the skin dendritic cell network. Immunol. Cell Biol. 88, 366–375 (2010).

    Article  PubMed  Google Scholar 

  22. Merad, M. & Manz, M.G. Dendritic cell homeostasis. Blood 113, 3418–3427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Melillo, J.A. et al. Dendritic cell (DC)-specific targeting reveals Stat3 as a negative regulator of DC function. J. Immunol. 184, 2638–2645 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Gorbachev, A.V. & Fairchild, R.L. Induction and regulation of T-cell priming for contact hypersensitivity. Crit. Rev. Immunol. 21, 451–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Takeshita, K., Yamasaki, T., Akira, S., Gantner, F. & Bacon, K.B. Essential role of MHC II-independent CD4+ T cells, IL-4, and STAT6 in contact hypesensitivity induced by fluorscein isothiocyanate in the mouse. Int. Immunol. 16, 685–695 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Dearman, R.J. & Kimber, I. Role of CD4+ T helper 2-type cells in cutaneous inflammatory responses induced by flourscein isothiocyanate. Immunology 101, 442–451 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bobr, A. et al. Acute ablation of Langerhans cells enhances skin immune responses. J. Immunol. 185, 4724–4728 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat. Immunol. 6, 1047–1053 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Headley, M.B. et al. TSLP conditions the lung immune environment for the generation of pathogenic innate and antigen-specific adaptive immune responses. J. Immunol. 182, 1641–1647 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Taylor, B.C. et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 206, 655–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ito, T. et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202, 1213–1223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ziegler, S.F. The role of thymic stromal lymphopoietin (TSLP) in allergic disorders. Curr. Opin. Immunol. 22, 795–799 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alferink, J. et al. Compartmentalized production of CCL17 in vivo: Strong inducibility in peripheral dendritic cells contrasts selective absence from the spleen. J. Exp. Med. 197, 585–599 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Caton, M.L., Smith-Raska, M.R. & Reizis, B. Notch-RBP-J signaling controls the homeostasis of CD8- dendritic cells in the spleen. J. Exp. Med. 204, 1653–1664 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Birnberg, T. et al. Lack of conventional dendritic cells is compatible with normal development and T cell homeostasis, but causes myeloid proliferative syndrome. Immunity 29, 986–997 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Ohnmacht, C. et al. Constitutive ablation of dendritic cells breaks self-tolerance of CD4 T cells and results in spontaneous fatal autoimmunity. J. Exp. Med. 206, 549–559 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoo, J. et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med. 202, 541–549 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li, M. et al. Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. Proc. Natl. Acad. Sci. USA 103, 11736–11741 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Briot, A. et al. Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J. Exp. Med. 206, 1135–1147 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dumortier, A. et al. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of notch signaling in the murine skin. PLoS ONE 5, e9258 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Luche, H., Weber, O., Nageswara-Rao, T., Blum, C. & Fehling, H.J. Faithful activation of an extra-bright red fluorescent protein in “knock-in” Cre-reporter mice ideally suited for lineage tracing studies. Eur. J. Immunol. 37, 43–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Cui, Y. et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol. Cell Biol. 24, 8037–8047 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaplan, D.H., Jenison, M.C., Saeland, S., Shlomchik, W.D. & Shlomchik, M.J. Epidermal Langerhans cell-deficient mice develop enhanced contact hypersensitivity. Immunity 23, 611–620 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Murphy, K.M., Heimberger, A.B. & Loh, D.Y. Induction by antigen of intrathymic apoptosis of CD4+CD8+ TCRlo thymocytes in vivo. Science 250, 1720–1723 (1990).

    Article  CAS  PubMed  Google Scholar 

  45. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Omori, M. & Ziegler, S. Induction of IL-4 expression in CD4+ T cells by thymic stromal lymphopoietin. J. Immunol. 178, 1396–1404 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Bell, B.D. et al. FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc. Natl. Acad. Sci. USA 105, 16677–16682 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Förster (University of Bonn) for mice with a transgene encoding GFP in the Ccl17 locus; T. Nakayama (Chiba University) for pMX-Cre-IRES-GFP; D. Rawlings and H. Kerns (Seattle Children's Research Institute) for Btk- and Tec-deficient bone marrow; J. Hamerman and D. Campbell for discussions of the manuscript; S. Ma and W. Xu for technical support; and M. Warren and S. McCarty for administrative support. Supported by the US National Institutes of Health (R01-AI068731, R01-AR056113, R01-AR055695 and P01-HL098067 to S.F.Z., and 5T32AI007411-19 to B.D.B.).

Author information

Authors and Affiliations

Authors

Contributions

B.D.B. and M.K. did most of the experiments and wrote the manuscript, with help from S.F.Z.; D.H.K., K.S., K.-U.W., B.R. and L.H. provided mouse strains and expertise; R.P.L. collaborated on the CHS studies; T.A.S. did the influenza infections and analyzed the response to infection; K.D. provided help with bioinformatics; and S.F.Z. supervised the work.

Corresponding author

Correspondence to Steven F Ziegler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 584 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bell, B., Kitajima, M., Larson, R. et al. The transcription factor STAT5 is critical in dendritic cells for the development of TH2 but not TH1 responses. Nat Immunol 14, 364–371 (2013). https://doi.org/10.1038/ni.2541

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2541

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing