Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An alternative NFAT-activation pathway mediated by IL-7 is critical for early thymocyte development

Abstract

Interleukin 7 (IL-7) has a critical role in the development of early CD4CD8 double-negative (DN) thymocytes. Although the transcription factor STAT5 is an important component of IL-7 signaling, differences in the phenotypes of mice deficient in STAT5, IL-7, IL-7 receptor alpha (IL-7rα) or the kinase Jak3 suggest the existence of STAT5-independent IL-7 signaling. Here we found that IL-7–Jak3 signals activated the transcription factor NFATc1 in DN thymocytes by phosphorylating Tyr371 in the regulatory region of NFATc1. This NFAT-activation pathway was critical for the survival and development of DN thymocytes, as deficiency in NFATc1 blocked thymocyte development at the DN1 stage, leading to T cell lymphopenia. In addition, our results demonstrated a cooperative function for NFATc1 and STAT5 in guiding thymocyte development in response to IL-7 signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NFAT activation in DN thymocytes.
Figure 2: IL-7-induced activation of NFAT is independent of calcineurin activity.
Figure 3: IL-7-induced activation of NFATc1 is mediated by Jak3.
Figure 4: Jak3-induced activation of NFATc1 and translocation of NFATc1 to the nucleus is mediated by Tyr371 phosphorylation.
Figure 5: NFATc1 regulates Bcl-2 expression in early DN thymocytes.
Figure 6: Activation of NFAT is essential for the survival and differentiation of DN1–DN3 cells.
Figure 7: Loss of NFATc1 blocks T cell development at DN1 stage.

Similar content being viewed by others

References

  1. Godfrey, D.I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  2. Dudley, E.C., Petrie, H.T., Shah, L.M., Owen, M.J. & Hayday, A.C. T cell receptor β chain gene rearrangement and selection during thymocyte development in adult mice. Immunity 1, 83–93 (1994).

    CAS  PubMed  Google Scholar 

  3. Graef, I.A., Chen, F. & Crabtree, G.R. NFAT signaling in vertebrate development. Curr. Opin. Genet. Dev. 11, 505–512 (2001).

    CAS  PubMed  Google Scholar 

  4. Crabtree, G.R. & Olson, E.N. NFAT signaling: choreographing the social lives of cells. Cell 109 (suppl. 1), S67–S79 (2002).

    CAS  PubMed  Google Scholar 

  5. Hogan, P.G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    CAS  PubMed  Google Scholar 

  6. Macian, F. NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472–484 (2005).

    CAS  PubMed  Google Scholar 

  7. Adachi, S., Amasaki, Y., Miyatake, S., Arai, N. & Iwata, M. Successive expression and activation of NFAT family members during thymocyte differentiation. J. Biol. Chem. 275, 14708–14716 (2000).

    CAS  PubMed  Google Scholar 

  8. Oukka, M. et al. The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 9, 295–304 (1998).

    CAS  PubMed  Google Scholar 

  9. Yoshida, H. et al. The transcription factor NF-ATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity 8, 115–124 (1998).

    CAS  PubMed  Google Scholar 

  10. Xanthoudakis, S. et al. An enhanced immune response in mice lacking the transcription factor NFAT1. Science 272, 892–895 (1996).

    CAS  PubMed  Google Scholar 

  11. Ranger, A.M., Oukka, M., Rengarajan, J. & Glimcher, L.H. Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity 9, 627–635 (1998).

    CAS  PubMed  Google Scholar 

  12. Jiang, Q. et al. Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev. 16, 513–533 (2005).

    CAS  PubMed  Google Scholar 

  13. Foxwell, B.M., Beadling, C., Guschin, D., Kerr, I. & Cantrell, D. Interleukin-7 can induce the activation of Jak1, Jak3 and STAT5 proteins in murine T cells. Eur. J. Immunol. 25, 3041–3046 (1995).

    CAS  PubMed  Google Scholar 

  14. Lin, J.X. & Leonard, W.J. The role of Stat5a and Stat5b in signaling by IL-2 family cytokines. Oncogene 19, 2566–2576 (2000).

    CAS  PubMed  Google Scholar 

  15. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    CAS  PubMed  Google Scholar 

  16. Peschon, J.J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    CAS  PubMed  Google Scholar 

  17. Puel, A., Ziegler, S.F., Buckley, R.H. & Leonard, W.J. Defective IL7R expression in TB+NK+ severe combined immunodeficiency. Nat. Genet. 20, 394–397 (1998).

    CAS  PubMed  Google Scholar 

  18. DiSanto, J.P., Muller, W., Guy-Grand, D., Fischer, A. & Rajewsky, K. Lymphoid development in mice with a targeted deletion of the interleukin 2 receptor γ chain. Proc. Natl. Acad. Sci. USA 92, 377–381 (1995).

    CAS  PubMed  Google Scholar 

  19. Cao, X. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor γ chain. Immunity 2, 223–238 (1995).

    CAS  PubMed  Google Scholar 

  20. Nosaka, T. et al. Defective lymphoid development in mice lacking Jak3. Science 270, 800–802 (1995).

    CAS  PubMed  Google Scholar 

  21. Park, S.Y. et al. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 3, 771–782 (1995).

    CAS  PubMed  Google Scholar 

  22. Thomis, D.C., Gurniak, C.B., Tivol, E., Sharpe, A.H. & Berg, L.J. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270, 794–797 (1995).

    CAS  PubMed  Google Scholar 

  23. Yao, Z. et al. Stat5a/b are essential for normal lymphoid development and differentiation. Proc. Natl. Acad. Sci. USA 103, 1000–1005 (2006).

    CAS  PubMed  Google Scholar 

  24. Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. & Weissman, I.L. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89, 1033–1041 (1997).

    CAS  PubMed  Google Scholar 

  25. Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1−/− mice. Cell 89, 1011–1019 (1997).

    CAS  PubMed  Google Scholar 

  26. Kondo, M., Akashi, K., Domen, J., Sugamura, K. & Weissman, I.L. Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common γ chain-deficient mice. Immunity 7, 155–162 (1997).

    CAS  PubMed  Google Scholar 

  27. Aifantis, I., Gounari, F., Scorrano, L., Borowski, C. & von Boehmer, H. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT. Nat. Immunol. 2, 403–409 (2001).

    CAS  PubMed  Google Scholar 

  28. Patra, A.K. et al. PKB rescues calcineurin/NFAT-induced arrest of Rag expression and pre-T cell differentiation. J. Immunol. 177, 4567–4576 (2006).

    CAS  PubMed  Google Scholar 

  29. Zhang, B.W. et al. T cell responses in calcineurin A α-deficient mice. J. Exp. Med. 183, 413–420 (1996).

    CAS  PubMed  Google Scholar 

  30. Neilson, J.R., Winslow, M.M., Hur, E.M. & Crabtree, G.R. Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 20, 255–266 (2004).

    CAS  PubMed  Google Scholar 

  31. Goodman, P.A., Niehoff, L.B. & Uckun, F.M. Role of tyrosine kinases in induction of the c-jun proto-oncogene in irradiated B-lineage lymphoid cells. J. Biol. Chem. 273, 17742–17748 (1998).

    CAS  PubMed  Google Scholar 

  32. Sudbeck, E.A. et al. Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents. Clin. Cancer Res. 5, 1569–1582 (1999).

    CAS  PubMed  Google Scholar 

  33. Tibbles, H.E. et al. Role of a JAK3-dependent biochemical signaling pathway in platelet activation and aggregation. J. Biol. Chem. 276, 17815–17822 (2001).

    CAS  PubMed  Google Scholar 

  34. Beals, C.R., Clipstone, N.A., Ho, S.N. & Crabtree, G.R. Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporin-sensitive intramolecular interaction. Genes Dev. 11, 824–834 (1997).

    CAS  PubMed  Google Scholar 

  35. Aringer, M. et al. Characterization and analysis of the proximal Janus kinase 3 promoter. J. Immunol. 170, 6057–6064 (2003).

    CAS  PubMed  Google Scholar 

  36. von Freeden-Jeffry, U., Solvason, N., Howard, M. & Murray, R. The earliest T lineage-committed cells depend on IL-7 for Bcl-2 expression and normal cell cycle progression. Immunity 7, 147–154 (1997).

    CAS  PubMed  Google Scholar 

  37. Kim, K., Lee, C.K., Sayers, T.J., Muegge, K. & Durum, S.K. The trophic action of IL-7 on pro-T cells: inhibition of apoptosis of pro-T1, -T2, and -T3 cells correlates with Bcl-2 and Bax levels and is independent of Fas and p53 pathways. J. Immunol. 160, 5735–5741 (1998).

    CAS  PubMed  Google Scholar 

  38. Kawamura, T. et al. Endothelin-1-dependent nuclear factor of activated T lymphocyte signaling associates with transcriptional coactivator p300 in the activation of the B cell leukemia-2 promoter in cardiac myocytes. Circ. Res. 94, 1492–1499 (2004).

    CAS  PubMed  Google Scholar 

  39. Changelian, P.S. et al. The specificity of JAK3 kinase inhibitors. Blood 111, 2155–2157 (2008).

    CAS  PubMed  Google Scholar 

  40. Bhattacharyya, S. et al. NFATc1 affects mouse splenic B cell function by controlling the calcineurin–NFAT signaling network. J. Exp. Med. 208, 823–839 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. de Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314–325 (2003).

    CAS  PubMed  Google Scholar 

  42. Hosoya, T. et al. GATA-3 is required for early T lineage progenitor development. J. Exp. Med. 206, 2987–3000 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, L., Leid, M. & Rothenberg, E.V. An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 329, 89–93 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Weber, B.N. et al. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476, 63–68 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhou, B. et al. Characterization of Nfatc1 regulation identifies an enhancer required for gene expression that is specific to pro-valve endocardial cells in the developing heart. Development 132, 1137–1146 (2005).

    CAS  PubMed  Google Scholar 

  46. Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    CAS  PubMed  Google Scholar 

  47. Kaech, S.M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    CAS  PubMed  Google Scholar 

  48. Li, J., Huston, G. & Swain, S.L. IL-7 promotes the transition of CD4 effectors to persistent memory cells. J. Exp. Med. 198, 1807–1815 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kondrack, R.M. et al. Interleukin 7 regulates the survival and generation of memory CD4 cells. J. Exp. Med. 198, 1797–1806 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Chuvpilo, S. et al. Alternative polyadenylation events contribute to the induction of NF-ATc in effector T cells. Immunity 10, 261–269 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Linden for cell sorting; S.Y. Na, B. Kneitz and T. Hünig (University of Würzburg) for Rag1−/− and Il2−/− mice; A. Rao (La Jolla Institute for Allergy and Immunology) for Nfatc1fl/fl mice; D. Kioussis (Medical Research Council National Institute for Medical Research, London) for Vav-Cre mice; S. Chuvpilo (TheraMAB LLC, Moscow) for GST-NFATc1 constructs; R. Rost (Institute of Molecular Biology and Biochemistry, Graz, Austria) for NFATc1 expression vector; W.J. Leonard (US National Institutes of Health) for expression vectors for human IL-2Rγ and mouse IL-7Rα; J.J. O'Shea (US National Institutes of Health) for expression vectors for human Jak3; K. Hasegawa (Kyoto Medical Center) for the BCL2 luciferase construct; J.C. Zũniga-Pflücker (University of Toronto) for OP9 and OP9-DL1 cells; J. Schneider-Schaulies (University of Würzburg) for help in lentiviral transduction experiments; and members of the Serfling laboratory for comments on the manuscript. Supported by Deutsche Forschungsgemeinschaft (TRR52 to A.A. and E.S., and DFG-SFB854-TP9 to U.B.), the Wilhelm-Sander Foundation (E.S.) and the Mildred Scheel Foundation (E.S.).

Author information

Authors and Affiliations

Authors

Contributions

A.K.P. conceived of the project and designed and did the experiments; A.A. assisted in OP9-DL1 coculture experiments and GST-protein purification; R.P.Z. and A.S. did mass spectrometry analysis for mapping of phosphorylated tyrosines; T.S. helped with Il7r−/− mice; U.B. contributed to immunofluorescence staining and discussions; E.S. contributed to the study organization; and A.K.P. and E.S. wrote the manuscript.

Corresponding authors

Correspondence to Amiya K Patra or Edgar Serfling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Table 1 (PDF 1004 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patra, A., Avots, A., Zahedi, R. et al. An alternative NFAT-activation pathway mediated by IL-7 is critical for early thymocyte development. Nat Immunol 14, 127–135 (2013). https://doi.org/10.1038/ni.2507

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2507

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing