Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational states of the kinase Lck regulate clustering in early T cell signaling

Abstract

Phosphorylation of the T cell antigen receptor (TCR) by the tyrosine kinase Lck is an essential step in the activation of T cells. Because Lck is constitutively active, spatial organization may regulate TCR signaling. Here we found that Lck distributions on the molecular level were controlled by the conformational states of Lck, with the open, active conformation inducing clustering and the closed, inactive conformation preventing clustering. In contrast, association with lipid domains and protein networks were not sufficient or necessary for Lck clustering. Conformation-driven Lck clustering was highly dynamic, so that TCR triggering resulted in Lck clusters that contained phosphorylated TCRs but excluded the phosphatase CD45. Our data suggest that Lck conformational states represent an intrinsic mechanism for the intermolecular organization of early T cell signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TCR activation recruits Lck into pre-existing clusters.
Figure 2: Clustering of Lck10 and wild-type Lck.
Figure 3: Cluster analysis of Lck mutants in open and closed conformations.
Figure 4: Association with protein networks does not contribute to the clustering of Lck.
Figure 5: Live cell PALM imaging of wild-type Lck and Lck(Y505F).
Figure 6: Lck clusters segregate from CD45 clusters and localize together with phosphorylated TCRζ after activation of the TCR.

Similar content being viewed by others

References

  1. Parsons, S.J. & Parsons, J.T. Src family kinases, key regulators of signal transduction. Oncogene 23, 7906–7909 (2004).

    CAS  PubMed  Google Scholar 

  2. Huppa, J.B. & Davis, M.M. T-cell-antigen recognition and the immunological synapse. Nat. Rev. Immunol. 3, 973–983 (2003).

    CAS  PubMed  Google Scholar 

  3. van der Merwe, P.A. & Dushek, O. Mechanisms for T cell receptor triggering. Nat. Rev. Immunol. 11, 47–55 (2011).

    CAS  PubMed  Google Scholar 

  4. Palacios, E.H. & Weiss, A. Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23, 7990–8000 (2004).

    CAS  Google Scholar 

  5. Yamaguchi, H. & Hendrickson, W.A. Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384, 484–489 (1996).

    CAS  PubMed  Google Scholar 

  6. Boggon, T.J. & Eck, M.J. Structure and regulation of Src family kinases. Oncogene 23, 7918–7927 (2004).

    CAS  PubMed  Google Scholar 

  7. Hermiston, M.L., Xu, Z. & Weiss, A. CD45: a critical regulator of signaling thresholds in immune cells. Annu. Rev. Immunol. 21, 107–137 (2003).

    CAS  PubMed  Google Scholar 

  8. Saunders, A.E. & Johnson, P. Modulation of immune cell signalling by the leukocyte common tyrosine phosphatase, CD45. Cell. Signal. 22, 339–348 (2010).

    CAS  PubMed  Google Scholar 

  9. D'Oro, U. & Ashwell, J.D. Cutting Edge: The CD45 tyrosine phosphatase is an inhibitor of Lck activity in thymocytes. J. Immunol. 162, 1879–1883 (1999).

    CAS  PubMed  Google Scholar 

  10. Wong, N.K.Y., Lai, J.C.Y., Birkenhead, D., Shaw, A.S. & Johnson, P. CD45 down-regulates Lck-mediated CD44 signaling and modulates actin rearrangement in T cells. J. Immunol. 181, 7033–7043 (2008).

    CAS  PubMed  Google Scholar 

  11. Davis, S.J. & van der Merwe, P.A. Lck and the nature of the T-cell receptor trigger. Trends Immunol. 32, 1–5 (2010).

    PubMed  Google Scholar 

  12. Smith-Garvin, J.E., Koretzky, G.A. & Jordan, M.S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Paster, W. et al. Genetically encoded Förster resonance energy transfer sensors for the conformation of the Src family kinase Lck. J. Immunol. 182, 2160–2167 (2009).

    CAS  PubMed  Google Scholar 

  14. Nika, K. et al. Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity 32, 766–777 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Davis, S.J. & van der Merwe, P.A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 7, 803–809 (2006).

    CAS  PubMed  Google Scholar 

  16. Rossy, J., Williamson, D.J. & Gaus, K. How does the kinase Lck phosphorylate the T cell receptor? Spatial organization as a regulatory mechanism. Front. Immunol. 3, 167 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Douglass, A.D. & Vale, R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Rodgers, W., Farris, D. & Mishra, S. Merging complexes: properties of membrane raft assembly during lymphocyte signaling. Trends Immunol. 26, 97–103 (2005).

    CAS  PubMed  Google Scholar 

  19. Lillemeier, B.F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96 (2010).

    CAS  PubMed  Google Scholar 

  20. Williamson, D.J. et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat. Immunol. 12, 655–662 (2011).

    CAS  PubMed  Google Scholar 

  21. Sherman, E. et al. Functional nanoscale organization of signaling molecules downstream of the T cell antigen receptor. Immunity 35, 705–720 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  PubMed  Google Scholar 

  23. Rust, M.J., Bates, M. & Zhuang, X. imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011).

    CAS  PubMed  Google Scholar 

  25. Owen, D.M. et al. PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J. Biophotonics 3, 446–454 (2010).

    CAS  PubMed  Google Scholar 

  26. Bunnell, S.C. et al. Persistence of cooperatively stabilized signaling clusters drives T-cell activation. Mol. Cell Biol. 26, 7155–7166 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Campi, G., Varma, R. & Dustin, M.L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Gaus, K., Chklovskaia, E., Fazekas de St Groth, B., Jessup, W. & Harder, T. Condensation of the plasma membrane at the site of T lymphocyte activation. J. Cell Biol. 171, 121–131 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zech, T. et al. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J. 28, 466–476 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Rentero, C. et al. Functional implications of plasma membrane condensation for T cell activation. PLoS ONE 3, e2262 (2008).

    PubMed  PubMed Central  Google Scholar 

  31. Laham, L.E., Mukhopadhyay, N. & Roberts, T.M. The activation loop in Lck regulates oncogenic potential by inhibiting basal kinase activity and restricting substrate specificity. Oncogene 19, 3961–3970 (2000).

    CAS  PubMed  Google Scholar 

  32. Rao, N. et al. Negative regulation of Lck by Cbl ubiquitin ligase. Proc. Natl. Acad. Sci. USA 99, 3794–3799 (2002).

    CAS  PubMed  Google Scholar 

  33. Bunnell, S.C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    CAS  PubMed  Google Scholar 

  35. Leupin, O., Zaru, R., Laroche, T., Müller, S. & Valitutti, S. Exclusion of CD45 from the T-cell receptor signaling area in antigen-stimulated T lymphocytes. Curr. Biol. 10, 277–280 (2000).

    CAS  PubMed  Google Scholar 

  36. Johnson, K.G. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc. Natl. Acad. Sci. USA 97, 10138–10143 (2000).

    CAS  PubMed  Google Scholar 

  37. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M.L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaizuka, Y., Douglass, A.D., Vardhana, S., Dustin, M.L. & Vale, R.D. The coreceptor CD2 uses plasma membrane microdomains to transduce signals in T cells. J. Cell Biol. 185, 521–534 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Gan, W. & Roux, B. Binding specificity of SH2 domains: insight from free energy simulations. Proteins 74, 996–1007 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hashimoto-Tane, A. et al. T-cell receptor microclusters critical for T-cell activation are formed independently of lipid raft clustering. Mol. Cell Biol. 30, 3421–3429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fairn, G.D. et al. High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. J. Cell Biol. 194, 257–275 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu, W., Doshi, A., Lei, M., Eck, M.J. & Harrison, S.C. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3, 629–638 (1999).

    CAS  PubMed  Google Scholar 

  43. Lee-Fruman, K.K., Collins, T.L. & Burakoff, S.J. Role of the Lck Src homology 2 and 3 domains in protein tyrosine phosphorylation. J. Biol. Chem. 271, 25003–25010 (1996).

    CAS  PubMed  Google Scholar 

  44. Yeung, T. et al. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319, 210–213 (2008).

    CAS  PubMed  Google Scholar 

  45. Aivazian, D. & Stern, L.J. Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7, 1023–1026 (2000).

    CAS  PubMed  Google Scholar 

  46. Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell 135, 702–713 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, H., Cordoba, S.-P. & Dushek, O. Anton van der Merwe, P. Basic residues in the T-cell receptor ζ cytoplasmic domain mediate membrane association and modulate signaling. Proc. Natl. Acad. Sci. USA 108, 19323–19328 (2011).

    CAS  PubMed  Google Scholar 

  48. Kuhns, M.S. & Davis, M.M. The safety on the TCR trigger. Cell 135, 594–596 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kabouridis, P.S., Isenberg, D.A. & Jury, E.C. A negatively charged domain of LAT mediates its interaction with the active form of Lck. Mol. Membr. Biol. 28, 487–494 (2011).

    CAS  PubMed  Google Scholar 

  50. Annibale, P., Vanni, S., Scarselli, M., Rothlisberger, U. & Radenovic, A. Quantitative photo activated localization microscopy: unraveling the effects of photoblinking. PLoS ONE 6, e22678 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Harder (University of Oxford) for mammalian expression constructs encoding full-length wild-type human Lck and Lck(Y505F); O. Acuto (University of Oxford) for Lck(Y394F) and Lck(R273A); J. Wiedenmann (University of Southampton) for the mEos2 expression construct; and K. Nika and O. Acuto for discussions. Supported by the Australian Research Council, the National Health and Medical Research Council of Australia and the Human Frontier Science Program.

Author information

Authors and Affiliations

Authors

Contributions

J.R. conceived of and did PALM and dSTORM experiments and data analysis and prepared the manuscript; D.M.O. conceived of and analyzed PALM and dSTORM data; D.J.W. did and analyzed PALM experiments; Z.Y. contributed to molecular biology; and K.G. was responsible for conceptualization and manuscript preparation.

Corresponding author

Correspondence to Katharina Gaus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 4957 kb)

Supplementary Video 1

High clustering dynamics of wild-type Lck during TCR activation. (AVI 3524 kb)

Supplementary Video 2

Reorganization of a wild-type Lck cluster during TCR activation. (AVI 261 kb)

Supplementary Video 3

Clustering dynamics of Y505F Lck during TCR activation. (AVI 1908 kb)

Supplementary Video 4

Stability of a cluster of Y505F Lck during TCR activation. (AVI 565 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossy, J., Owen, D., Williamson, D. et al. Conformational states of the kinase Lck regulate clustering in early T cell signaling. Nat Immunol 14, 82–89 (2013). https://doi.org/10.1038/ni.2488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing