Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lymphoid priming in human bone marrow begins before expression of CD10 with upregulation of L-selectin

Abstract

Expression of the cell-surface antigen CD10 has long been used to define the lymphoid commitment of human cells. Here we report a unique lymphoid-primed population in human bone marrow that was generated from hematopoietic stem cells (HSCs) before onset of the expression of CD10 and commitment to the B cell lineage. We identified this subset by high expression of the homing molecule L-selectin (CD62L). CD10CD62Lhi progenitors had full lymphoid and monocytic potential but lacked erythroid potential. Gene-expression profiling placed the CD10CD62Lhi population at an intermediate stage of differentiation between HSCs and lineage-negative (Lin) CD34+CD10+ progenitors. CD62L was expressed on immature thymocytes, and its ligands were expressed at the cortico-medullary junction of the thymus, which suggested a possible role for this molecule in homing to the thymus. Our studies identify the earliest stage of lymphoid priming in human bone marrow.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Identification of bone marrow progenitors that lack myeloid and erythroid clonogenic potential.
Figure 2: Lympho-myeloid potential of bone marrow progenitors.
Figure 3: Lineage potential of CD10 CD62Lhi cells by in vitro clonal analysis and in vivo transplantation studies.
Figure 4: CD10CD62Lhi cells represent an intermediate stage of differentiation between HSCs and CD10+ progenitors.
Figure 5: CD10CD62Lhi cells represent a distinct progenitor population with a unique expression profile that combines genes of HSCs and early lymphoid cells.
Figure 6: High CD62L expression and recruitment of progenitors to human thymus.

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  Google Scholar 

  2. Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    Article  CAS  Google Scholar 

  3. Forsberg, E.C., Serwold, T., Kogan, S., Weissman, I.L. & Passegue, E. New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell 126, 415–426 (2006).

    Article  CAS  Google Scholar 

  4. Schlenner, S.M. & Rodewald, H.R. Early T cell development and the pitfalls of potential. Trends Immunol. 31, 303–310 (2010).

    Article  CAS  Google Scholar 

  5. Richie Ehrlich, L.I., Serwold, T. & Weissman, I.L. In vitro assays misrepresent in vivo lineage potentials of murine lymphoid progenitors. Blood 117, 2618–2624 (2011).

    Article  Google Scholar 

  6. Payne, K.J. & Crooks, G.M. Immune-cell lineage commitment: translation from mice to humans. Immunity 26, 674–677 (2007).

    Article  CAS  Google Scholar 

  7. Rossi, M.I. et al. B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood 101, 576–584 (2003).

    Article  CAS  Google Scholar 

  8. Mold, J.E. et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science 330, 1695–1699 (2010).

    Article  CAS  Google Scholar 

  9. Leavy, O. Haematopoiesis: baby tolerance. Nat. Rev. Immunol. 11, 78 (2011).

    Article  CAS  Google Scholar 

  10. Galy, A., Travis, M., Cen, D. & Chen, B. Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3, 459–473 (1995).

    Article  CAS  Google Scholar 

  11. Ichii, M. et al. The density of CD10 corresponds to commitment and progression in the human B lymphoid lineage. PLoS ONE 5, e12954 (2010).

    Article  Google Scholar 

  12. Six, E.M. et al. A human postnatal lymphoid progenitor capable of circulating and seeding the thymus. J. Exp. Med. 204, 3085–3093 (2007).

    Article  CAS  Google Scholar 

  13. Rosen, S.D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004).

    Article  CAS  Google Scholar 

  14. Cho, S. & Spangrude, G.J. Enrichment of functionally distinct mouse hematopoietic progenitor cell populations using CD62L. J. Immunol. 187, 5203–5210 (2011).

    Article  CAS  Google Scholar 

  15. Perry, S.S. et al. L-selectin defines a bone marrow analog to the thymic early T-lineage progenitor. Blood 103, 2990–2996 (2004).

    Article  CAS  Google Scholar 

  16. Perry, S.S., Welner, R.S., Kouro, T., Kincade, P.W. & Sun, X.H. Primitive lymphoid progenitors in bone marrow with T lineage reconstituting potential. J. Immunol. 177, 2880–2887 (2006).

    Article  CAS  Google Scholar 

  17. Hao, Q.L. et al. Identification of a novel, human multilymphoid progenitor in cord blood. Blood 97, 3683–3690 (2001).

    Article  CAS  Google Scholar 

  18. Storms, R.W., Goodell, M.A., Fisher, A., Mulligan, R.C. & Smith, C. Hoechst dye efflux reveals a novel CD7+CD34 lymphoid progenitor in human umbilical cord blood. Blood 96, 2125–2133 (2000).

    CAS  PubMed  Google Scholar 

  19. Haddad, R. et al. Molecular characterization of early human T/NK and B-lymphoid progenitor cells in umbilical cord blood. Blood 104, 3918–3926 (2004).

    Article  CAS  Google Scholar 

  20. Hoebeke, I. et al. T-, B- and NK-lymphoid, but not myeloid cells arise from human CD34+CD38CD7+ common lymphoid progenitors expressing lymphoid-specific genes. Leukemia 21, 311–319 (2007).

    Article  CAS  Google Scholar 

  21. Doulatov, S. et al. Revised map of the human progenitor hierarchy shows the origin of macrophages and dendritic cells in early lymphoid development. Nat. Immunol. 11, 585–593 (2010).

    Article  CAS  Google Scholar 

  22. Manz, M.G., Miyamoto, T., Akashi, K. & Weissman, I.L. Prospective isolation of human clonogenic common myeloid progenitors. Proc. Natl. Acad. Sci. USA 99, 11872–11877 (2002).

    Article  CAS  Google Scholar 

  23. La Motte-Mohs, R.N., Herer, E. & Zuniga-Pflucker, J.C. Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 105, 1431–1439 (2005).

    Article  CAS  Google Scholar 

  24. Majewski, I.J. et al. Opposing roles of polycomb repressive complexes in hematopoietic stem and progenitor cells. Blood 116, 731–739 (2010).

    Article  CAS  Google Scholar 

  25. Blom, B. & Spits, H. Development of human lymphoid cells. Annu. Rev. Immunol. 24, 287–320 (2006).

    Article  CAS  Google Scholar 

  26. Biassoni, R., Ferrini, S., Prigione, I., Moretta, A. & Long, E.O. CD3-negative lymphokine-activated cytotoxic cells express the CD3ɛ gene. J. Immunol. 140, 1685–1689 (1988).

    CAS  PubMed  Google Scholar 

  27. Lanier, L.L., Chang, C., Spits, H. & Phillips, J.H. Expression of cytoplasmic CD3 epsilon proteins in activated human adult natural killer (NK) cells and CD3 γ, δ, ɛ complexes in fetal NK cells. Implications for the relationship of NK and T lymphocytes. J. Immunol. 149, 1876–1880 (1992).

    CAS  PubMed  Google Scholar 

  28. Misslitz, A. et al. Thymic T cell development and progenitor localization depend on CCR7. J. Exp. Med. 200, 481–491 (2004).

    Article  CAS  Google Scholar 

  29. Krueger, A., Willenzon, S., Lyszkiewicz, M., Kremmer, E. & Forster, R. CC chemokine receptor 7 and 9 double-deficient hematopoietic progenitors are severely impaired in seeding the adult thymus. Blood 115, 1906–1912 (2010).

    Article  CAS  Google Scholar 

  30. Zlotoff, D.A. et al. CCR7 and CCR9 together recruit hematopoietic progenitors to the adult thymus. Blood 115, 1897–1905 (2010).

    Article  CAS  Google Scholar 

  31. Streeter, P.R., Rouse, B.T. & Butcher, E.C. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107, 1853–1862 (1988).

    Article  CAS  Google Scholar 

  32. Arakawa-Hoyt, J. et al. The number and generative capacity of human B lymphocyte progenitors, measured in vitro and in vivo, is higher in umbilical cord blood than in adult or pediatric bone marrow. Bone Marrow Transplant. 24, 1167–1176 (1999).

    Article  CAS  Google Scholar 

  33. Kim, D.K. et al. Comparison of hematopoietic activities of human bone marrow and umbilical cord blood CD34 positive and negative cells. Stem Cells 17, 286–294 (1999).

    Article  CAS  Google Scholar 

  34. De Smedt, M. et al. T-lymphoid differentiation potential measured in vitro is higher in CD34+CD38−/lo hematopoietic stem cells from umbilical cord blood than from bone marrow and is an intrinsic property of the cells. Haematologica 96, 646–654 (2011).

    Article  CAS  Google Scholar 

  35. Bhatia, M., Wang, J.C., Kapp, U., Bonnet, D. & Dick, J.E. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc. Natl. Acad. Sci. USA 94, 5320–5325 (1997).

    Article  CAS  Google Scholar 

  36. Månsson, R. et al. Molecular evidence for hierarchical transcriptional lineage priming in fetal and adult stem cells and multipotent progenitors. Immunity 26, 407–419 (2007).

    Article  Google Scholar 

  37. Luc, S. et al. Down-regulation of Mpl marks the transition to lymphoid-primed multipotent progenitors with gradual loss of granulocyte-monocyte potential. Blood 111, 3424–3434 (2008).

    Article  CAS  Google Scholar 

  38. Dias, S., Mansson, R., Gurbuxani, S., Sigvardsson, M. & Kee, B.L. E2A proteins promote development of lymphoid-primed multipotent progenitors. Immunity 29, 217–227 (2008).

    Article  CAS  Google Scholar 

  39. Hao, Q.L. et al. Human intrathymic lineage commitment is marked by differential CD7 expression: identification of CD7 lympho-myeloid thymic progenitors. Blood 111, 1318–1326 (2008).

    Article  CAS  Google Scholar 

  40. Rossi, F.M. et al. Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nat. Immunol. 6, 626–634 (2005).

    Article  CAS  Google Scholar 

  41. Holmes, R. & Zuniga-Pflucker, J.C. The OP9–DL1 system: generation of T-lymphocytes from embryonic or hematopoietic stem cells in vitro. Cold Spring Harb. Protoc. doi:10.1101/pdb.prot5156 (2009).

  42. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, research0034–research0034.11 (2002).

  43. Bolstad, B.M., Irizarry, R.A., Astrand, M. & Speed, T.P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003).

    Article  CAS  Google Scholar 

  44. Liu, W.M. et al. Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18, 1593–1599 (2002).

    Article  CAS  Google Scholar 

  45. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

  46. Smyth, G.K. Bioinformatics and Computational Biology Solutions using R and Bioconductor, R (eds. Gentleman, R., Carey, V., Dudoit, S., Irizarry, R. & Huber, W.) 387–420 (Springer, 2005).

  47. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  48. de Hoon, M.J., Imoto, S., Nolan, J. & Miyano, S. Open source clustering software. Bioinformatics 20, 1453–1454 (2004).

    Article  CAS  Google Scholar 

  49. Saldanha, A.J. Java Treeview–extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    Article  CAS  Google Scholar 

  50. Hu, Y. & Smyth, G.K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Scholes, F. Codrea, X. Li and S. Dandekar for technical assistance; and D. Kohn, G. Dravid, S. Sandoval and M. Corselli for advice on the manuscript. Supported by the US National Institutes of Health (P01 HL073104 and RO1 HL077912), the California Institute of Regenerative Medicine (RC1-00108 and RM1-01717 to G.M.C.; and RN1-00557-1 to H.K.A.M.), Flow Cytometry Core of the Broad Stem Cell Research Center of the University of California, Los Angeles, and the Jonsson Comprehensive Cancer Center Genomics Shared Resource of the University of California, Los Angeles.

Author information

Authors and Affiliations

Authors

Contributions

L.A.K. designed, did and analyzed experiments and wrote the paper; Q.-L.H. designed, did and analyzed experiments, R.S. did bioinformatics analysis of microarray data; S.G. and Y.Z. assisted in experiments; C.P. did experiments; H.K.A.M. supervised bioinformatics analysis; and G.M.C. designed and analyzed experiments and wrote the paper.

Corresponding author

Correspondence to Gay M Crooks.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Tables 1–3 (PDF 1924 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kohn, L., Hao, QL., Sasidharan, R. et al. Lymphoid priming in human bone marrow begins before expression of CD10 with upregulation of L-selectin. Nat Immunol 13, 963–971 (2012). https://doi.org/10.1038/ni.2405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2405

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing