Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Deciphering the transcriptional network of the dendritic cell lineage

Abstract

Although much progress has been made in the understanding of the ontogeny and function of dendritic cells (DCs), the transcriptional regulation of the lineage commitment and functional specialization of DCs in vivo remains poorly understood. We made a comprehensive comparative analysis of CD8+, CD103+, CD11b+ and plasmacytoid DC subsets, as well as macrophage DC precursors and common DC precursors, across the entire immune system. Here we characterized candidate transcriptional activators involved in the commitment of myeloid progenitor cells to the DC lineage and predicted regulators of DC functional diversity in tissues. We identified a molecular signature that distinguished tissue DCs from macrophages. We also identified a transcriptional program expressed specifically during the steady-state migration of tissue DCs to the draining lymph nodes that may control tolerance to self tissue antigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of genes encoding transcription factors along the DC lineage.
Figure 2: Identification of genes significantly upregulated in cDCs relative to their expression in macrophages.
Figure 3: Unique gene signatures characterize distinct tissue DC clusters.
Figure 4: Heterogeneity of nonlymphoid-tissue CD11b+ cDCs.
Figure 5: Tissue-migratory cDCs upregulate a unique gene signature regardless of tissue or cellular origin.
Figure 6: Tissue-migratory cDCs express genes encoding immune response–dampening molecules in the steady state.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Steinman, R.M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Trombetta, E.S. & Mellman, I. Cell biology of antigen processing in vitro and in vivo. Annu. Rev. Immunol. 23, 975–1028 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Randolph, G.J., Angeli, V. & Swartz, M.A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5, 617–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Cyster, J.G. Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J. Exp. Med. 189, 447–450 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hashimoto, D., Miller, J. & Merad, M. Dendritic cell and macrophage heterogeneity in vivo. Immunity 35, 323–335 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geissmann, F., Gordon, S., Hume, D.A., Mowat, A.M. & Randolph, G.J. Unravelling mononuclear phagocyte heterogeneity. Nat. Rev. Immunol. 10, 453–460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heath, W.R. & Carbone, F.R. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 10, 1237–1244 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Shortman, K. & Heath, W.R. The CD8+ dendritic cell subset. Immunol. Rev. 234, 18–31 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Reizis, B., Bunin, A., Ghosh, H.S., Lewis, K.L. & Sisirak, V. Plasmacytoid dendritic cells: recent progress and open questions. Annu. Rev. Immunol. 29, 163–183 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Helft, J., Ginhoux, F., Bogunovic, M. & Merad, M. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol. Rev. 234, 55–75 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Coombes, J.L. & Powrie, F. Dendritic cells in intestinal immune regulation. Nat. Rev. Immunol. 8, 435–446 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fogg, D.K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 8, 1207–1216 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Naik, S.H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8, 1217–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lewis, K.L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780–791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Waskow, C. et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9, 676–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Aliberti, J. et al. Essential role for ICSBP in the in vivo development of murine CD8α+ dendritic cells. Blood 101, 305–310 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. DiMartino, J.F. et al. The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood 98, 618–626 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, L., Nichogiannopoulou, A., Shortman, K. & Georgopoulos, K. Cell-autonomous defects in dendritic cell populations of Ikaros mutant mice point to a developmental relationship with the lymphoid lineage. Immunity 7, 483–492 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. McKenna, H.J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489–3497 (2000).

    CAS  PubMed  Google Scholar 

  27. Carotta, S. et al. The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 32, 628–641 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Laouar, Y., Welte, T., Fu, X.Y. & Flavell, R.A. STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity 19, 903–912 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Reizis, B. Regulation of plasmacytoid dendritic cell development. Curr. Opin. Immunol. 22, 206–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ohtsuka, H. et al. Bcl6 is required for the development of mouse CD4+ and CD8α+ dendritic cells. J. Immunol. 186, 255–263 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Meredith, M.M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209, 1153–1165 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Satpathy, A.T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ohl, L. et al. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21, 279–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Lyman, S.D. et al. Identification of soluble and membrane-bound isoforms of the murine flt3 ligand generated by alternative splicing of mRNAs. Oncogene 10, 149–157 (1995).

    CAS  PubMed  Google Scholar 

  35. Broxmeyer, H.E. et al. The kit receptor and its ligand, steel factor, as regulators of hemopoiesis. Cancer Cells 3, 480–487 (1991).

    CAS  PubMed  Google Scholar 

  36. del Rio, M.L., Lucas, C.L., Buhler, L., Rayat, G. & Rodriguez-Barbosa, J.I. HVEM/LIGHT/BTLA/CD160 cosignaling pathways as targets for immune regulation. J. Leukoc. Biol. 87, 223–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Hochrein, H. et al. Differential production of IL-12, IFN-α, and IFN-γ by mouse dendritic cell subsets. J. Immunol. 166, 5448–5455 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Sung, S.S. et al. A major lung CD103 (αE)-β7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol. 176, 2161–2172 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Longhi, M.P. et al. Dendritic cells require a systemic type I interferon response to mature and induce CD4+ Th1 immunity with poly IC as adjuvant. J. Exp. Med. 206, 1589–1602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jelinek, I. et al. TLR3-specific double-stranded RNA oligonucleotide adjuvants induce dendritic cell cross-presentation, CTL responses, and antiviral protection. J. Immunol. 186, 2422–2429 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Lauterbach, H. et al. Mouse CD8α+ DCs and human BDCA3+ DCs are major producers of IFN-lambda in response to poly IC. J. Exp. Med. 207, 2703–2717 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dorner, B.G. et al. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31, 823–833 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Bachem, A. et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207, 1273–1281 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schmucker, D. et al. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101, 671–684 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Watson, F.L. et al. Extensive diversity of Ig-superfamily proteins in the immune system of insects. Science 309, 1874–1878 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Varol, C., Zigmond, E. & Jung, S. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat. Rev. Immunol. 10, 415–426 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Manicassamy, S. et al. Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329, 849–853 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Henri, S. et al. The dendritic cell populations of mouse lymph nodes. J. Immunol. 167, 741–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Sharpe, A.H., Wherry, E.J., Ahmed, R. & Freeman, G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 8, 239–245 (2007).

    CAS  PubMed  Google Scholar 

  53. Travis, M.A. et al. Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449, 361–365 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Posselt, G., Schwarz, H., Duschl, A. & Horejs-Hoeck, J. Suppressor of cytokine signaling 2 is a feedback inhibitor of TLR-induced activation in human monocyte-derived dendritic cells. J. Immunol. 187, 2875–2884 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Yagil, Z. et al. The enigma of the role of protein inhibitor of activated STAT3 (PIAS3) in the immune response. Trends Immunol. 31, 199–204 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Minas, K. & Liversidge, J. Is the CD200/CD200 receptor interaction more than just a myeloid cell inhibitory signal? Crit. Rev. Immunol. 26, 213–230 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen, M. et al. Dendritic cell apoptosis in the maintenance of immune tolerance. Science 311, 1160–1164 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Stranges, P.B. et al. Elimination of antigen-presenting cells and autoreactive T cells by Fas contributes to prevention of autoimmunity. Immunity 26, 629–641 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kissenpfennig, A. et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nat. Immunol. 5, 597–605 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Irizarry, R.A. et al. Summaries of affymetrix GeneChip probe level data. Nucleic Acids Res. 31, e15 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Blatt, M., Wiseman, S. & Domany, E. Superparamagnetic clustering of data. Phys. Rev. Lett. 76, 3251–3254 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank colleagues of the ImmGen Project, especially the technical team, including M. Painter, J. Ericson and S. Davis, for contributions; C. Benoist for contributions to the design and writing of the manuscript; and eBioscience and Affymetrix for support of the ImmGen Project. Supported by the National Institute of Allergy and Infectious Diseases of the US National Institutes of Health (R24 AI072073 to the ImmGen Project (led by C. Benoist); AI080884 and HL086899 to M.M.; JDRF172010770 and DP2DK083052-01 to B.D.B.; DK074500 and AI045757 to S.J.T.; HL69438, DK056638, HL097819 and HL097700 to P.S.F.; and U54CA149145 to V.J.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

J.C.M. did experiments and wrote the paper; M.M. designed experiments and wrote the paper; B.D.B. provided intellectual input, did computational analyses and helped write the paper; T.S. did computation analyses and identified all modules; E.L.G. purified macrophage populations and provided intellectual input; V.J. did computation analyses and, together with T.S., designed Ontogenet; A.C. and G.P. did computation analyses; M.L. did experiments; K.G.E., J.H., D.H., A.C. and J.P. purified DC populations; M.G. purified macrophage populations; M.B. and A.B.-P. purified DC and macrophage populations; P.S.F. provided intellectual input; and G.J.R. and S.J.T. provided intellectual input for experimental design.

Corresponding author

Correspondence to Miriam Merad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1678 kb)

Supplementary Table 1

Comparison of DC subsets transcriptomes (XLSX 192 kb)

Supplementary Table 2

Comparison of the transcriptome of migratory DC and tissue resident DC (XLSX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, J., Brown, B., Shay, T. et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat Immunol 13, 888–899 (2012). https://doi.org/10.1038/ni.2370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing