Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation

An Author Correction to this article was published on 24 March 2022

This article has been updated

Abstract

The adaptors DOCK8 and MyD88 have been linked to serological memory. Here we report that DOCK8-deficient patients had impaired antibody responses and considerably fewer CD27+ memory B cells. B cell proliferation and immunoglobulin production driven by Toll-like receptor 9 (TLR9) were considerably lower in DOCK8-deficient B cells, but those driven by the costimulatory molecule CD40 were not. In contrast, TLR9-driven expression of AICDA (which encodes the cytidine deaminase AID), the immunoglobulin receptor CD23 and the costimulatory molecule CD86 and activation of the transcription factor NF-κB, the kinase p38 and the GTPase Rac1 were intact. DOCK8 associated constitutively with MyD88 and the tyrosine kinase Pyk2 in normal B cells. After ligation of TLR9, DOCK8 became tyrosine-phosphorylated by Pyk2, bound the Src-family kinase Lyn and linked TLR9 to a Src–kinase Syk–transcription factor STAT3 cascade essential for TLR9-driven B cell proliferation and differentiation. Thus, DOCK8 functions as an adaptor in a TLR9-MyD88 signaling pathway in B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired antibody responses, inability to maintain serological memory and fewer memory B cells in DOCK8-deficient patients.
Figure 2: Impaired CpG-driven B cell proliferation and immunoglobulin production in response to CpG in DOCK8-deficient patients.
Figure 3: Normal CpG-driven upregulation of the expression of AICDA, CD23 and CD86, activation of NFκB, p38 and Rac1, and secretion of IL-6 in B cells from DOCK8-deficient patients.
Figure 4: CpG-induced DOCK8-dependent phosphorylation of STAT3 in B cells is essential for B cell proliferation and IgG production.
Figure 5: CpG-driven phosphorylation of STAT3 in B cells is dependent on Syk and requires TLR9 and MyD88.
Figure 6: DOCK8 mediates CpG activation of a Pyk2-Src-Syk-STAT3 cascade essential for B cell proliferation and differentiation.
Figure 7: DOCK8 associates with MyD88 and Pyk2 and undergoes Pyk2-mediated tyrosine phosphorylation and association with Src and/or Lyn after ligation of TLR9.

Similar content being viewed by others

Change history

References

  1. Yoshida, T. et al. Memory B and memory plasma cells. Immunol. Rev. 237, 117–139 (2010).

    CAS  PubMed  Google Scholar 

  2. Huggins, J. et al. CpG DNA activation and plasma-cell differentiation of CD27 naive human B cells. Blood 109, 1611–1619 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Jiang, W. et al. TLR9 stimulation drives naive B cells to proliferate and to attain enhanced antigen presenting function. Eur. J. Immunol. 37, 2205–2213 (2007).

    CAS  PubMed  Google Scholar 

  4. Giordani, L. et al. IFN-alpha amplifies human naive B cell TLR-9-mediated activation and Ig production. J. Leukoc. Biol. 86, 261–271 (2009).

    CAS  PubMed  Google Scholar 

  5. Carpenter, E.L., Mick, R., Ruter, J. & Vonderheide, R.H. Activation of human B cells by the agonist CD40 antibody CP-870,893 and augmentation with simultaneous toll-like receptor 9 stimulation. J. Transl. Med. 7, 93 (2009).

    PubMed  PubMed Central  Google Scholar 

  6. Katsenelson, N. et al. Synthetic CpG oligodeoxynucleotides augment BAFF- and APRIL-mediated immunoglobulin secretion. Eur. J. Immunol. 37, 1785–1795 (2007).

    CAS  PubMed  Google Scholar 

  7. Weeratna, R.D., Makinen, S.R., McCluskie, M.J. & Davis, H.L. TLR agonists as vaccine adjuvants: comparison of CpG ODN and resiquimod (R-848). Vaccine 23, 5263–5270 (2005).

    CAS  PubMed  Google Scholar 

  8. Zhang, X.Q. et al. Potent antigen-specific immune responses stimulated by codelivery of CpG ODN and antigens in degradable microparticles. J. Immunother. 30, 469–478 (2007).

    PubMed  Google Scholar 

  9. Cunningham-Rundles, C. & Bodian, C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin. Immunol. 92, 34–48 (1999).

    CAS  PubMed  Google Scholar 

  10. Latz, E. et al. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat. Immunol. 8, 772–779 (2007).

    CAS  PubMed  Google Scholar 

  11. Pasare, C. & Medzhitov, R. Control of B-cell responses by Toll-like receptors. Nature 438, 364–368 (2005).

    CAS  PubMed  Google Scholar 

  12. Guay, H.M., Andreyeva, T.A., Garcea, R.L., Welsh, R.M. & Szomolanyi-Tsuda, E. MyD88 is required for the formation of long-term humoral immunity to virus infection. J. Immunol. 178, 5124–5131 (2007).

    CAS  PubMed  Google Scholar 

  13. Hou, B. et al. Selective utilization of Toll-like receptor and MyD88 signaling in B cells for enhancement of the antiviral germinal center response. Immunity 34, 375–384 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Meyer-Bahlburg, A., Khim, S. & Rawlings, D.J. B cell intrinsic TLR signals amplify but are not required for humoral immunity. J. Exp. Med. 204, 3095–3101 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gavin, A.L. et al. Adjuvant-enhanced antibody responses in the absence of Toll-like receptor signaling. Science 314, 1936–1938 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Park, S.M. et al. MyD88 signaling is not essential for induction of antigen-specific B cell responses but is indispensable for protection against Streptococcus pneumoniae infection following oral vaccination with attenuated Salmonella expressing PspA antigen. J. Immunol. 181, 6447–6455 (2008).

    CAS  PubMed  Google Scholar 

  17. Seibert, S.A., Mex, P., Kohler, A., Kaufmann, S.H. & Mittrucker, H.W. TLR2-, TLR4- and Myd88-independent acquired humoral and cellular immunity against Salmonella enterica serovar Typhimurium. Immunol. Lett. 127, 126–134 (2010).

    CAS  PubMed  Google Scholar 

  18. Sin, J.I. MyD88 signal is required for more efficient induction of Ag-specific adaptive immune responses and antitumor resistance in a human papillomavirus E7 DNA vaccine model. Vaccine 29, 4125–4131 (2011).

    CAS  PubMed  Google Scholar 

  19. Browne, E.P. & Littman, D.R. Myd88 is required for an antibody response to retroviral infection. PLoS Pathog. 5, e1000298 (2009).

    PubMed  PubMed Central  Google Scholar 

  20. Meller, N., Merlot, S. & Guda, C. CZH proteins: a new family of Rho-GEFs. J. Cell Sci. 118, 4937–4946 (2005).

    CAS  PubMed  Google Scholar 

  21. Côte, J.F. & Vuori, K. GEF what? Dock180 and related proteins help Rac to polarize cells in new ways. Trends Cell Biol. 17, 383–393 (2007).

    PubMed  PubMed Central  Google Scholar 

  22. Randall, K.L. et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat. Immunol. 10, 1283–1291 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, Q. et al. Combined immunodeficiency associated with DOCK8 mutations. N. Engl. J. Med. 361, 2046–2055 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Engelhardt, K.R. et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J. Allergy Clin. Immunol. 124, 1289–1302 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Bonilla, F.A. et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann. Allergy Asthma Immunol. 94, S1–S63 (2005).

    PubMed  Google Scholar 

  26. Broder, K. et al. Preventing tetanus, diphtheria, and pertussis among adolescents: use of tetanus toxoid, reduced diphtheria toxoid and acellular pertussis vaccines recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm. Rep. 55, 1–34 (2006).

    PubMed  Google Scholar 

  27. Hartmann, G. et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J. Immunol. 164, 1617–1624 (2000).

    CAS  PubMed  Google Scholar 

  28. Cunningham-Rundles, C. et al. TLR9 activation is defective in common variable immune deficiency. J. Immunol. 176, 1978–1987 (2006).

    CAS  PubMed  Google Scholar 

  29. Hartmann, G. & Krieg, A.M. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol. 164, 944–953 (2000).

    CAS  PubMed  Google Scholar 

  30. Dedeoglu, F., Horwitz, B., Chaudhuri, J., Alt, F.W. & Geha, R.S. Induction of activation-induced cytidine deaminase gene expression by IL-4 and CD40 ligation is dependent on STAT6 and NFκB. Int. Immunol. 16, 395–404 (2004).

    CAS  PubMed  Google Scholar 

  31. Arrighi, J.F., Rebsamen, M., Rousset, F., Kindler, V. & Hauser, C. A critical role for p38 mitogen-activated protein kinase in the maturation of human blood-derived dendritic cells induced by lipopolysaccharide, TNF-alpha, and contact sensitizers. J. Immunol. 166, 3837–3845 (2001).

    CAS  PubMed  Google Scholar 

  32. Lim, W. et al. Distinct role of p38 and c-Jun N-terminal kinases in IL-10-dependent and IL-10-independent regulation of the costimulatory molecule B7.2 in lipopolysaccharide-stimulated human monocytic cells. J. Immunol. 168, 1759–1769 (2002).

    CAS  PubMed  Google Scholar 

  33. Kawai, T. et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5, 1061–1068 (2004).

    CAS  PubMed  Google Scholar 

  34. Gotoh, K. et al. Selective control of type I IFN induction by the Rac activator DOCK2 during TLR-mediated plasmacytoid dendritic cell activation. J. Exp. Med. 207, 721–730 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Avery, D.T. et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J. Exp. Med. 207, 155–171 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Diehl, S.A. et al. STAT3-mediated up-regulation of BLIMP1 Is coordinated with BCL6 down-regulation to control human plasma cell differentiation. J. Immunol. 180, 4805–4815 (2008).

    CAS  PubMed  Google Scholar 

  37. Barton, G.M. & Kagan, J.C. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nat. Rev. Immunol. 9, 535–542 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsuda, T. & Hirano, T. Association of p72 tyrosine kinase with Stat factors and its activation by interleukin-3, interleukin-6, and granulocyte colony-stimulating factor. Blood 83, 3457–3461 (1994).

    CAS  PubMed  Google Scholar 

  39. Uckun, F.M., Qazi, S., Ma, H., Tuel-Ahlgren, L. & Ozer, Z. STAT3 is a substrate of SYK tyrosine kinase in B-lineage leukemia/lymphoma cells exposed to oxidative stress. Proc. Natl. Acad. Sci. USA 107, 2902–2907 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Avraham, H., Park, S.Y., Schinkmann, K. & Avraham, S. RAFTK/Pyk2-mediated cellular signalling. Cell. Signal. 12, 123–133 (2000).

    CAS  PubMed  Google Scholar 

  41. Xi, C.X., Xiong, F., Zhou, Z., Mei, L. & Xiong, W.C. PYK2 interacts with MyD88 and regulates MyD88-mediated NF-kappaB activation in macrophages. J. Leukoc. Biol. 87, 415–423 (2010).

    CAS  PubMed  Google Scholar 

  42. Bonnette, P.C. et al. Phosphoproteomic characterization of PYK2 signaling pathways involved in osteogenesis. J. Proteomics 73, 1306–1320 (2010).

    CAS  PubMed  Google Scholar 

  43. Gauld, S.B. & Cambier, J.C. Src-family kinases in B-cell development and signaling. Oncogene 23, 8001–8006 (2004).

    CAS  PubMed  Google Scholar 

  44. Haynes, M.P. et al. Src kinase mediates phosphatidylinositol 3-kinase/Akt-dependent rapid endothelial nitric-oxide synthase activation by estrogen. J. Biol. Chem. 278, 2118–2123 (2003).

    CAS  PubMed  Google Scholar 

  45. Boudot, C. et al. Involvement of the Src kinase Lyn in phospholipase C-γ2 phosphorylation and phosphatidylinositol 3-kinase activation in Epo signalling. Biochem. Biophys. Res. Commun. 300, 437–442 (2003).

    CAS  PubMed  Google Scholar 

  46. Mócsai, A., Ruland, J. & Tybulewicz, V.L. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387–402 (2010).

    PubMed  PubMed Central  Google Scholar 

  47. Sanjuan, M.A. et al. CpG-induced tyrosine phosphorylation occurs via a TLR9-independent mechanism and is required for cytokine secretion. J. Cell Biol. 172, 1057–1068 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Turkson, J. et al. Stat3 activation by Src induces specific gene regulation and is required for cell transformation. Mol. Cell Biol. 18, 2545–2552 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi, C.S. & Kehrl, J.H. Pyk2 amplifies epidermal growth factor and c-Src-induced Stat3 activation. J. Biol. Chem. 279, 17224–17231 (2004).

    CAS  PubMed  Google Scholar 

  50. Green, N.M. & Marshak-Rothstein, A. Toll-like receptor driven B cell activation in the induction of systemic autoimmunity. Semin. Immunol. 23, 106–112 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Jabara, H.H., Fu, S.M., Geha, R.S. & Vercelli, D. CD40 and IgE: Synergism between anti-CD40 mAb and IL-4 in the induction of IgE synthesis by highly purified human B cells. J. Exp. Med. 172, 1861–1864 (1990).

    CAS  PubMed  Google Scholar 

  52. Jabara, H.H., Brodeur, S.R. & Geha, R.S. Glucocorticoids upregulate CD40 ligand expression and induce CD40L-dependent immunoglobulin isotype switching. J. Clin. Invest. 107, 371–378 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gallego, M.D. et al. WIP and WASP play complementary roles in T cell homing and chemotaxis to SDF-1α. Int. Immunol. 18, 221–232 (2006).

    CAS  PubMed  Google Scholar 

  54. Shen, X.Z., Lukacher, A.E., Billet, S., Williams, I.R. & Bernstein, K.E. Expression of angiotensin-converting enzyme changes major histocompatibility complex class I peptide presentation by modifying C termini of peptide precursors. J. Biol. Chem. 283, 9957–9965 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank F. Uckun (University of Southern California, Los Angeles) for SYKINH-61; R. Treisman (Cancer Research UK) for hemagglutinin-tagged MRTF-A; J.-L. Casanova (The Rockefeller University), A. Puel and C. Picard (Hopital Necker-Enfants Malades, France) for the MyD88-deficient EBV-B cell line; K. Eurich for technical assistance; A. Rambhatla and A. Chen for help in DNA sequencing; members of the Geha laboratory for discussions; J. Kagan and H. Oettgen for comments on the manuscript; and the patients and their families for donating blood. Supported by the US Public Health Service (P01AI076210, T32AI007512 and R01AI083503 to R.S.G.; R21AI087627 to T.A.C.; and K08AI076625 to D.R.M.), the Dubai Harvard Foundation for Medical Research (R.S.G. and L.D.N.), the Swiss National Science Foundation (PASMP3-127678/1 to M.R.), the Clinical Immunology Society (E.J.) and the Manton Foundation (E.J. and L.D.N.).

Author information

Authors and Affiliations

Authors

Contributions

H.H.J., D.R.M., E.J., M.J.M., N.R., A.B., I.Ra., H.B. and M.R. did the experiments; L.S., S.B., R.W., G.D., M.D., W.A.-H., I.B., S.B., N.K., H.D.O., A.P., M.K., G.L. and I.Re. provided patient blood samples; K.A.F. and D.G. provided mice; J.M. and L.D.N. provided advice; S.K., R.C. and T.A.C. sequenced DNA; and H.H.J. and R.S.G. wrote the manuscript.

Corresponding author

Correspondence to Raif S Geha.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Tables 1–3 (PDF 18208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabara, H., McDonald, D., Janssen, E. et al. DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol 13, 612–620 (2012). https://doi.org/10.1038/ni.2305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2305

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing