Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The many lives of IL-9: a question of survival?

Abstract

Although the cytokine interleukin 9 (IL-9) was discovered decades ago, it remains one of the most enigmatic cytokines identified so far, in particular because its functional activities remain far from clear. Breakthroughs made through the use of IL-9 reporter mice have allowed the identification of cell types that produce IL-9 in vivo and, contrary to expectations based on previous results obtained in vitro, it is not T cells but instead a previously unknown type of innate lymphoid cell, called the 'ILC2 cell', that is the main cell type that expresses IL-9 in vivo. In this perspective, we put forward a hypothesis about the potential biological functions of IL-9 in the immune system and beyond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation of IL-9 production in T cells and ILCs.
Figure 2: Hypothetical model for the function of IL-9 in the regulation of ILC2 cells.

Similar content being viewed by others

References

  1. Uyttenhove, C., Simpson, R.J. & Van Snick, J. Functional and structural characterization of P40, a mouse glycoprotein with T-cell growth factor activity. Proc. Natl. Acad. Sci. USA 85, 6934–6938 (1988).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Schmitt, E., Van Brandwijk, R., Van Snick, J., Siebold, B. & Rude, E. TCGF III/P40 is produced by naive murine CD4+ T cells but is not a general T cell growth factor. Eur. J. Immunol. 19, 2167–2170 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Hültner, L. et al. Mast cell growth-enhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). Eur. J. Immunol. 20, 1413–1416 (1990).

    Article  PubMed  Google Scholar 

  4. Van Snick, J. et al. Cloning and characterization of a cDNA for a new mouse T cell growth factor (P40). J. Exp. Med. 169, 363–368 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Yang, Y.C. et al. Expression cloning of cDNA encoding a novel human hematopoietic growth factor: human homologue of murine T-cell growth factor P40. Blood 74, 1880–1884 (1989).

    CAS  PubMed  Google Scholar 

  6. Modi, W.S. et al. Regional localization of the human glutaminase (GLS) and interleukin-9 (IL9) genes by in situ hybridization. Cytogenet. Cell Genet. 57, 114–116 (1991).

    Article  CAS  PubMed  Google Scholar 

  7. Mock, B.A. et al. IL9 maps to mouse chromosome 13 and human chromosome 5. Immunogenetics 31, 265–270 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Renauld, J.C. et al. Expression cloning of the murine and human interleukin 9 receptor cDNAs. Proc. Natl. Acad. Sci. USA 89, 5690–5694 (1992).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Eklund, K.K., Ghildyal, N., Austen, K.F. & Stevens, R.L. Induction by IL-9 and suppression by IL-3 and IL-4 of the levels of chromosome 14-derived transcripts that encode late-expressed mouse mast cell proteases. J. Immunol. 151, 4266–4273 (1993).

    CAS  PubMed  Google Scholar 

  10. Dugas, B. et al. Interleukin-9 potentiates the interleukin-4-induced immunoglobulin (IgG, IgM and IgE) production by normal human B lymphocytes. Eur. J. Immunol. 23, 1687–1692 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Vink, A., Warnier, G., Brombacher, F. & Renauld, J.C. Interleukin 9-induced in vivo expansion of the B-1 lymphocyte population. J. Exp. Med. 189, 1413–1423 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Fontaine, R.H. et al. IL-9/IL-9 receptor signaling selectively protects cortical neurons against developmental apoptosis. Cell Death Differ. 15, 1542–1552 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Dong, Q. et al. IL-9 induces chemokine expression in lung epithelial cells and baseline airway eosinophilia in transgenic mice. Eur. J. Immunol. 29, 2130–2139 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Gounni, A.S. et al. IL-9-mediated induction of eotaxin1/CCL11 in human airway smooth muscle cells. J. Immunol. 173, 2771–2779 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Knoops, L. & Renauld, J.C. IL-9 and its receptor: from signal transduction to tumorigenesis. Growth Factors 22, 207–215 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Faulkner, H., Humphreys, N., Renauld, J.C., Van Snick, J. & Grencis, R. Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur. J. Immunol. 27, 2536–2540 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Faulkner, H., Renauld, J.C., Van Snick, J. & Grencis, R.K. Interleukin-9 enhances resistance to the intestinal nematode Trichuris muris. Infect. Immun. 66, 3832–3840 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Temann, U.A., Geba, G.P., Rankin, J.A. & Flavell, R.A. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J. Exp. Med. 188, 1307–1320 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Temann, U.A., Ray, P. & Flavell, R.A. Pulmonary overexpression of IL-9 induces Th2 cytokine expression, leading to immune pathology. J. Clin. Invest. 109, 29–39 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. McMillan, S.J., Bishop, B., Townsend, M.J., McKenzie, A.N. & Lloyd, C.M. The absence of interleukin 9 does not affect the development of allergen-induced pulmonary inflammation nor airway hyperreactivity. J. Exp. Med. 195, 51–57 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Townsend, J.M. et al. IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Cheng, G. et al. Anti-interleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model. Am. J. Respir. Crit. Care Med. 166, 409–416 (2002).

    Article  PubMed  Google Scholar 

  23. Kearley, J. et al. IL-9 governs allergen-induced mast cell numbers in the lung and chronic remodeling of the airways. Am. J. Respir. Crit. Care Med. 183, 865–875 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Khan, W.I. et al. Modulation of intestinal muscle contraction by interleukin-9 (IL-9) or IL-9 neutralization: correlation with worm expulsion in murine nematode infections. Infect. Immun. 71, 2430–2438 (2003).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Nowak, E.C. et al. IL-9 as a mediator of Th17-driven inflammatory disease. J. Exp. Med. 206, 1653–1660 (2009).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Elyaman, W. et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc. Natl. Acad. Sci. USA 106, 12885–12890 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Faulkner, H., Renauld, J.C., Van Snick, J. & Grencis, R.K. Interleukin-9 enhances resistance to the intestinal nematode Trichuris muris. Infect. Immun. 66, 3832–3840 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Antoniu, S.A. MEDI-528, an anti-IL-9 humanized antibody for the treatment of asthma. Curr. Opin. Mol. Ther. 12, 233–239 (2010).

    CAS  PubMed  Google Scholar 

  29. Lu, L.F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Eller, K. et al. IL-9 production by regulatory T cells recruits mast cells that are essential for regulatory T cell-induced immune suppression. J. Immunol. 186, 83–91 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Veldhoen, M. et al. Transforming growth factor-beta ′reprograms′ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+Foxp3 effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chang, H.C. et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11, 527–534 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Staudt, V. et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33, 192–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Tan, C. et al. Antigen-specific Th9 cells exhibit uniqueness in their kinetics of cytokine production and short retention at the inflammatory site. J. Immunol. 185, 6795–6801 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Wilhelm, C. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat. Immunol. 12, 1071–1077 (2011).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Spits, H. & Di Santo, J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Houssiau, F.A. et al. A cascade of cytokines is responsible for IL-9 expression in human T cells. Involvement of IL-2, IL-4, and IL-10. J. Immunol. 154, 2624–2630 (1995).

    CAS  PubMed  Google Scholar 

  39. Houssiau, F.A., Renauld, J.C., Fibbe, W.E. & Van Snick, J. IL-2 dependence of IL-9 expression in human T lymphocytes. J. Immunol. 148, 3147–3151 (1992).

    CAS  PubMed  Google Scholar 

  40. Kajiyama, Y. et al. IL-2-induced IL-9 production by allergen-specific human helper T-cell clones. Int. Arch. Allergy Immunol. 143, 71–75 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Uyttenhove, C., Brombacher, F. & Van Snick, J. TGF-β interactions with IL-1 family members trigger IL-4-independent IL-9 production by mouse CD4+ T cells. Eur. J. Immunol. 40, 2230–2235 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Schmitt, E. et al. IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-β and IL-4, and is inhibited by IFN-γ. J. Immunol. 153, 3989–3996 (1994).

    CAS  PubMed  Google Scholar 

  43. Fallon, P.G. et al. Expression of interleukin-9 leads to Th2 cytokine-dominated responses and fatal enteropathy in mice with chronic Schistosoma mansoni infections. Infect. Immun. 68, 6005–6011 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Temann, U.A., Laouar, Y., Eynon, E.E., Homer, R. & Flavell, R.A. IL9 leads to airway inflammation by inducing IL13 expression in airway epithelial cells. Int. Immunol. 19, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Steenwinckel, V. et al. IL-13 mediates in vivo IL-9 activities on lung epithelial cells but not on hematopoietic cells. J. Immunol. 178, 3244–3251 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Steenwinckel, V. et al. IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa. J. Immunol. 182, 4737–4743 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Gounni, A.S. et al. Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils. Blood 96, 2163–2171 (2000).

    CAS  PubMed  Google Scholar 

  48. Singhera, G.K., MacRedmond, R. & Dorscheid, D.R. Interleukin-9 and -13 inhibit spontaneous and corticosteroid induced apoptosis of normal airway epithelial cells. Exp. Lung Res. 34, 579–598 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Demoulin, J.B., Van Roost, E., Stevens, M., Groner, B. & Renauld, J.C. Distinct roles for STAT1, STAT3, and STAT5 in differentiation gene induction and apoptosis inhibition by inte rleukin-9. J. Biol. Chem. 274, 25855–25861 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitta Stockinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, C., Turner, JE., Van Snick, J. et al. The many lives of IL-9: a question of survival?. Nat Immunol 13, 637–641 (2012). https://doi.org/10.1038/ni.2303

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2303

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing