Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss

Abstract

Aging is linked to greater susceptibility to chronic inflammatory diseases, several of which, including periodontitis, involve neutrophil-mediated tissue injury. Here we found that aging-associated periodontitis was accompanied by lower expression of Del-1, an endogenous inhibitor of neutrophil adhesion dependent on the integrin LFA-1, and by reciprocal higher expression of interleukin 17 (IL-17). Consistent with that, IL-17 inhibited gingival endothelial cell expression of Del-1, thereby promoting LFA-1-dependent recruitment of neutrophils. Young Del-1-deficient mice developed spontaneous periodontitis that featured excessive neutrophil infiltration and IL-17 expression; disease was prevented in mice doubly deficient in Del-1 and LFA-1 or in Del-1 and the IL-17 receptor. Locally administered Del-1 inhibited IL-17 production, neutrophil accumulation and bone loss. Therefore, Del-1 suppressed LFA-1-dependent recruitment of neutrophils and IL-17-triggered inflammatory pathology and may thus be a promising therapeutic agent for inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lower expression of Del-1 in old mice is correlated with periodontal bone loss.
Figure 2: Del-1 deficiency is associated with inflammatory periodontal bone loss and neutrophil infiltration.
Figure 3: LFA-1 dependence of Del-1 deficiency–associated inflammation and bone loss.
Figure 4: Inflammatory bone loss associated with Del-1 deficiency is abrogated in mice with dual deficiency in Del-1 and IL-17R.
Figure 5: IL-17 downregulates Del-1 expression.
Figure 6: Del-1 inhibits IL-17 and periodontal inflammation in old mice.
Figure 7: Inhibition of bone loss by Del-1 and other treatments that block LFA-1 or IL-17.

Similar content being viewed by others

References

  1. Ley, K., Laudanna, C., Cybulsky, M.I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat. Rev. Immunol. 7, 678–689 (2007).

    Article  CAS  Google Scholar 

  2. Luster, A.D., Alon, R. & von Andrian, U.H. Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005).

    Article  CAS  Google Scholar 

  3. Chavakis, E., Choi, E.Y. & Chavakis, T. Novel aspects in the regulation of the leukocyte adhesion cascade. Thromb. Haemost. 102, 191–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Choi, E.Y. et al. Del-1, an endogenous leukocyte-endothelial adhesion inhibitor, limits inflammatory cell recruitment. Science 322, 1101–1104 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Deban, L. et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat. Immunol. 11, 328–334 (2010).

    Article  CAS  Google Scholar 

  6. Hidai, C., Kawana, M., Kitano, H. & Kokubun, S. Discoidin domain of Del1 protein contributes to its deposition in the extracellular matrix. Cell Tissue Res. 330, 83–95 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Nussbaum, G. & Shapira, L. How has neutrophil research improved our understanding of periodontal pathogenesis? J. Clin. Periodontol. 38, 49–59 (2011).

    Article  Google Scholar 

  8. Serhan, C.N., Chiang, N. & Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8, 349–361 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Pihlstrom, B.L., Michalowicz, B.S. & Johnson, N.W. Periodontal diseases. Lancet 366, 1809–1820 (2005).

    Article  PubMed  Google Scholar 

  10. Genco, R.J. & Van Dyke, T.E. Prevention: reducing the risk of CVD in patients with periodontitis. Nat. Rev. Cardiol 7, 479–480 (2010).

    Article  PubMed  Google Scholar 

  11. Tonetti, M.S. et al. Treatment of periodontitis and endothelial function. N. Engl. J. Med. 356, 911–920 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Lundberg, K., Wegner, N., Yucel-Lindberg, T. & Venables, P.J. Periodontitis in RA—the citrullinated enolase connection. Nat. Rev. Rheumatol. 6, 727–730 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Lalla, E. & Papapanou, P.N. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat. Rev. Endocrinol. 7, 738–748 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Hajishengallis, G. Too old to fight? Aging and its toll on innate immunity. Mol. Oral Microbiol. 25, 25–37 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Huttner, E.A., Machado, D.C., de Oliveira, R.B., Antunes, A.G. & Hebling, E. Effects of human aging on periodontal tissues. Spec. Care Dentist. 29, 149–155 (2009).

    Article  PubMed  Google Scholar 

  16. Cevenini, E. et al. Age-related inflammation: the contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Curr. Pharm. Des. 16, 609–618 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Gomez, C.R., Nomellini, V., Faunce, D.E. & Kovacs, E.J. Innate immunity and aging. Exp. Gerontol. 43, 718–728 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Cascão, R., Rosário, H.S., Souto-Carneiro, M.M. & Fonseca, J.E. Neutrophils in rheumatoid arthritis: more than simple final effectors. Autoimmun. Rev. 9, 531–535 (2010).

    Article  PubMed  Google Scholar 

  19. Liang, S., Hosur, K.B., Domon, H. & Hajishengallis, G. Periodontal inflammation and bone loss in aged mice. J. Periodontal Res. 45, 574–578 (2010).

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Cua, D.J. & Tato, C.M. Innate IL-17-producing cells: the sentinels of the immune system. Nat. Rev. Immunol. 10, 479–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Gaffen, S.L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 9, 556–567 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Gaffen, S.L. & Hajishengallis, G. A new inflammatory cytokine on the block: re-thinking periodontal disease and the Th1/Th2 paradigm in the context of Th17 cells and IL-17. J. Dent. Res. 87, 817–828 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Darveau, R.P. Periodontitis: a polymicrobial disruption of host homeostasis. Nat. Rev. Microbiol. 8, 481–490 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Li, L. et al. IL-17 produced by neutrophils regulates IFN-γ–mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J. Clin. Invest. 120, 331–342 (2010).

    Article  CAS  Google Scholar 

  25. Ferretti, S., Bonneau, O., Dubois, G.R., Jones, C.E. & Trifilieff, A. IL-17, produced by lymphocytes and neutrophils, is necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a possible trigger. J. Immunol. 170, 2106–2112 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Hoshino, A. et al. MPO-ANCA induces IL-17 production by activated neutrophils in vitro via classical complement pathway-dependent manner. J. Autoimmun. 31, 79–89 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Brodlie, M. et al. Raised interleukin-17 is immunolocalised to neutrophils in cystic fibrosis lung disease. Eur. Respir. J. 37, 1378–1385 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, A.M. et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 187, 490–500 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Eustace, A. et al. Identification of cells expressing IL-17A and IL-17F in the lungs of patients with COPD. Chest 139, 1089–1100 (2011).

    Article  PubMed  Google Scholar 

  30. Lubberts, E. IL-17/Th17 targeting: on the road to prevent chronic destructive arthritis? Cytokine 41, 84–91 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Hasturk, H. et al. Resolvin E1 regulates inflammation at the cellular and tissue level and restores tissue homeostasis in vivo. J. Immunol. 179, 7021–7029 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  Google Scholar 

  33. Stark, M.A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Smith, E. et al. IL-17A inhibits the expansion of IL-17A-producing T cells in mice through “short-loop” inhibition via IL-17 receptor. J. Immunol. 181, 1357–1364 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Lemos, H.P. et al. Prostaglandin mediates IL-23/IL-17-induced neutrophil migration in inflammation by inhibiting IL-12 and IFNγ production. Proc. Natl. Acad. Sci. USA 106, 5954–5959 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Graves, D.T., Fine, D., Teng, Y.T., Van Dyke, T.E. & Hajishengallis, G. The use of rodent models to investigate host-bacteria interactions related to periodontal diseases. J. Clin. Periodontol. 35, 89–105 (2008).

    Article  PubMed  Google Scholar 

  37. Weitz-Schmidt, G., Welzenbach, K., Dawson, J. & Kallen, J. Improved lymphocyte function-associated antigen-1 (LFA-1) inhibition by statin derivatives: molecular basis determined by x-ray analysis and monitoring of LFA-1 conformational changes in vitro and ex vivo. J. Biol. Chem. 279, 46764–46771 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Hartl, D. et al. Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. J. Immunol. 181, 8053–8067 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Witowski, J. et al. IL-17 stimulates intraperitoneal neutrophil infiltration through the release of GROα chemokine from mesothelial cells. J. Immunol. 165, 5814–5821 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Kempf, T. et al. GDF-15 is an inhibitor of leukocyte integrin activation required for survival after myocardial infarction in mice. Nat. Med. 17, 581–588 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Ohyama, H. et al. The involvement of IL-23 and the Th17 pathway in periodontitis. J. Dent. Res. 88, 633–638 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Dubin, P.J. & Kolls, J.K. Th17 cytokines and mucosal immunity. Immunol. Rev. 226, 160–171 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Yu, J.J. et al. An essential role for IL-17 in preventing pathogen-initiated bone destruction: recruitment of neutrophils to inflamed bone requires IL-17 receptor-dependent signals. Blood 109, 3794–3802 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Chakravarti, A., Raquil, M.A., Tessier, P. & Poubelle, P.E. Surface RANKL of Toll-like receptor 4-stimulated human neutrophils activates osteoclastic bone resorption. Blood 114, 1633–1644 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Lundqvist, C., Baranov, V., Teglund, S., Hammarstrom, S. & Hammarstrom, M.L. Cytokine profile and ultrastructure of intraepithelial γδ T cells in chronically inflamed human gingiva suggest a cytotoxic effector function. J. Immunol. 153, 2302–2312 (1994).

    CAS  PubMed  Google Scholar 

  46. Armitage, G.C. Classifying periodontal diseases—a long-standing dilemma. Periodontol. 2000 30, 9–23 (2002).

    Article  PubMed  Google Scholar 

  47. Baker, P.J., Dixon, M. & Roopenian, D.C. Genetic control of susceptibility to Porphyromonas gingivalis-induced alveolar bone loss in mice. Infect. Immun. 68, 5864–5868 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Hajishengallis, G. et al. Low-abundance biofilm species orchestrates inflammatory periodontal disease through the commensal microbiota and complement. Cell Host Microbe 10, 497–506 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Quertermous and R. Kundu (Stanford University School of Medicine) for Edil3−/− mice; C.M. Ballantyne (Baylor College of Medicine) for Itgal−/− mice; Amgen for Il17ra−/− mice and mAb to IL-17 (M210); Novartis for LFA878; Valentis for Del-1; and S. Gaffen for discussions and advice. Supported by the Intramural Research Program of the US National Institutes of Health, the National Cancer Institute (T.C.), Deutsche Forschungsgemeinschaft (SFB655/TPB10 and CH279/5-1 to T.C.), the Medical Faculty of the University of Dresden (MedDrive to K.-J.C.), the Medical Research Council UK (G0900408 to M.A.C.) and the Extramural Research Program of the US National Institutes of Health (DE015254, DE018292, DE021580 and DE021685 to G.H.).

Author information

Authors and Affiliations

Authors

Contributions

M.A.E., R.J., T.A., J.C., J.-H.L., S.L., P.A.C., J.L.K., M.R., L.C.H., E.Y.C., and A.H. did research and data analysis; F.L. generated analytical tools and did tissue processing; K.-J.C. generated analytical tools; M.A.C. designed and supervised microbiological analysis; T.C. conceived of and designed the research and edited the paper together with G.H.; and G.H. conceived of, designed and supervised the research and wrote and edited the paper.

Corresponding author

Correspondence to George Hajishengallis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Tables 1–2 and Note (PDF 1938 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eskan, M., Jotwani, R., Abe, T. et al. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol 13, 465–473 (2012). https://doi.org/10.1038/ni.2260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing