Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intrinsic antiviral immunity

Abstract

Intrinsic antiviral immunity refers to a form of innate immunity that directly restricts viral replication and assembly, thereby rendering a cell nonpermissive to a specific class or species of viruses. Intrinsic immunity is conferred by restriction factors that are mostly preexistent in certain cell types, although these factors can be further induced by viral infection. Intrinsic virus-restriction factors recognize specific viral components, but unlike other pattern-recognition receptors that inhibit viral infection indirectly by inducing interferons and other antiviral molecules, intrinsic antiviral factors block viral replication immediately and directly. This review focuses on recent advances in understanding of the roles of intrinsic antiviral factors that restrict infection by human immunodeficiency virus and influenza virus.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The evolution of innate immunity.
Figure 2: Intrinsic antiviral factors against HIV-1.
Figure 3: Intrinsic antiviral factors against influenza virus.

References

  1. 1

    Hamilton, A.J. & Baulcombe, D.C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    CAS  PubMed  Google Scholar 

  2. 2

    Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Aoki, K., Moriguchi, H., Yoshioka, T., Okawa, K. & Tabara, H. In vitro analyses of the production and activity of secondary small interfering RNAs in C. elegans. EMBO J. 26, 5007–5019 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Diaz-Pendon, J.A., Li, F., Li, W.X. & Ding, S.W. Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19, 2053–2063 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Umbach, J.L. & Cullen, B.R. The role of RNAi and microRNAs in animal virus replication and antiviral immunity. Genes Dev. 23, 1151–1164 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000).

    CAS  PubMed  Google Scholar 

  7. 7

    Dalmay, T., Horsefield, R., Braunstein, T.H. & Baulcombe, D.C. SDE3 encodes an RNA helicase required for post-transcriptional gene silencing in Arabidopsis. EMBO J. 20, 2069–2078 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Voinnet, O., Pinto, Y.M. & Baulcombe, D.C. Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants. Proc. Natl. Acad. Sci. USA 96, 14147–14152 (1999).

    CAS  PubMed  Google Scholar 

  9. 9

    Li, H.W. & Ding, S.W. Antiviral silencing in animals. FEBS Lett. 579, 5965–5973 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Marraffini, L.A. & Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet. 11, 181–190 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Cullen, B.R. Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat. Immunol. 7, 563–567 (2006).

    CAS  PubMed  Google Scholar 

  12. 12

    Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269–276 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Plaisance-Bonstaff, K. & Renne, R. Viral miRNAs. Methods Mol. Biol. 721, 43–66 (2011).

    CAS  PubMed  Google Scholar 

  14. 14

    Wianny, F. & Zernicka-Goetz, M. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2, 70–75 (2000).

    CAS  PubMed  Google Scholar 

  15. 15

    Yang, S., Tutton, S., Pierce, E. & Yoon, K. Specific double-stranded RNA interference in undifferentiated mouse embryonic stem cells. Mol. Cell. Biol. 21, 7807–7816 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Ferrandon, D., Imler, J.-L., Hetru, C. & Hoffmann, J.A. The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections. Nat. Rev. Immunol. 7, 862–874 (2007).

    CAS  PubMed  Google Scholar 

  17. 17

    Janeway, C.A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    CAS  Google Scholar 

  18. 18

    Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Bowie, A.G. & Unterholzner, L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol. 8, 911–922 (2008).

    CAS  PubMed  Google Scholar 

  20. 20

    Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    CAS  PubMed  Google Scholar 

  21. 21

    Ronald, P.C. & Beutler, B. Plant and animal sensors of conserved microbial signatures. Science 330, 1061–1064 (2010).

    CAS  Google Scholar 

  22. 22

    Skaug, B., Jiang, X. & Chen, Z.J. The role of ubiquitin in NF-kB regulatory pathways. Annu. Rev. Biochem. 78, 769–796 (2009).

    CAS  PubMed  Google Scholar 

  23. 23

    Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    CAS  Google Scholar 

  24. 24

    Hornung, V. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Google Scholar 

  25. 25

    Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Gack, M.U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Kowalinski, E. et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147, 423–435 (2011).

    CAS  PubMed  Google Scholar 

  29. 29

    Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6, 981–988 (2005).

    CAS  Google Scholar 

  30. 30

    Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005).

    CAS  Google Scholar 

  31. 31

    Seth, R.B., Sun, L., Ea, C.K. & Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kB and IRF3. Cell 122, 669–682 (2005).

    CAS  Google Scholar 

  32. 32

    Xu, L.G. et al. VISA Is an adapter protein required for virus-triggered IFN-b signaling. Mol. Cell 19, 727–740 (2005).

    CAS  Google Scholar 

  33. 33

    Hou, F. et al. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146, 448–461 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    CAS  Google Scholar 

  35. 35

    Pichlmair, A. et al. Activation of MDA5 requires higher-order RNA structures generated during virus infection. J. Virol. 83, 10761–10769 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Sun, Q. et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24, 633–642 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Barber, G.N. Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr. Opin. Immunol. 23, 10–20 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    CAS  Google Scholar 

  39. 39

    Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12, 959–965 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Chiu, Y.-H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Davis, B.K., Wen, H. & Ting, J.P. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu. Rev. Immunol. 29, 707–735 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Mehle, A. & Doudna, J.A. A host of factors regulating influenza virus replication. Viruses 2, 566–573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Wolf, D. & Goff, S.P. Host restriction factors blocking retroviral replication. Annu. Rev. Genet. 42, 143–163 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Chakrabarti, A., Jha, B.K. & Silverman, R.H. New insights into the role of RNase L in innate immunity. J. Interferon Cytokine Res. 31, 49–57 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Pindel, A. & Sadler, A. The role of protein kinase R in the interferon response. J. Interferon Cytokine Res. 31, 59–70 (2011).

    CAS  PubMed  Google Scholar 

  49. 49

    Geijtenbeek, T.B. et al. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nat. Immunol. 1, 353–357 (2000).

    CAS  Google Scholar 

  50. 50

    Lehner, T. et al. The emerging role of innate immunity in protection against HIV-1 infection. Vaccine 26, 2997–3001 (2008).

    CAS  PubMed  Google Scholar 

  51. 51

    Alter, G. et al. HIV-1 adaptation to NK-cell-mediated immune pressure. Nature 476, 96–100 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Kirchhoff, F. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses. Cell Host Microbe 8, 55–67 (2010).

    CAS  PubMed  Google Scholar 

  53. 53

    Hrecka, K. et al. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474, 658–661 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Yan, N., Regalado-Magdos, A.D., Stiggelbout, B., Lee-Kirsch, M.A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Yan, N. & Lieberman, J. Gaining a foothold: how HIV avoids innate immune recognition. Curr. Opin. Immunol. 23, 21–28 (2010).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Sheehy, A., Gaddis, N., Choi, J. & Malim, M.H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    CAS  PubMed  Google Scholar 

  58. 58

    Sheehy, A., Gaddis, N. & Malim, M.H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med. 9, 1404–1407 (2003).

    CAS  PubMed  Google Scholar 

  59. 59

    Sawyer, S.L., Emerman, M. & Malik, H.S. Ancient adaptive evolution of the primate antiviral DNA-editing enzyme APOBEC3G. PLoS Biol. 2, E275 (2004).

    PubMed  PubMed Central  Google Scholar 

  60. 60

    Vartanian, J.P., Meyerhans, A., Asjo, B. & Wain-Hobson, S. Selection, recombination, and G—A hypermutation of human immunodeficiency virus type 1 genomes. J. Virol. 65, 1779–1788 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Bishop, K.N., Verma, M., Kim, E.-Y., Wolinsky, S.M. & Malim, M.H. APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog. 4, e1000231 (2008).

    PubMed  PubMed Central  Google Scholar 

  62. 62

    Mbisa, J.L. et al. Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J. Virol. 81, 7099–7110 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Bogerd, H.P., Doehle, B.P., Wiegand, H.L. & Cullen, B.R. A single amino acid difference in the host APOBEC3G protein controls the primate species specificity of HIV type 1 virion infectivity factor. Proc. Natl. Acad. Sci. USA 101, 3770–3774 (2004).

    CAS  PubMed  Google Scholar 

  64. 64

    Mangeat, B., Turelli, P., Liao, S. & Trono, D. A single amino acid determinant governs the species-specific sensitivity of APOBEC3G to Vif action. J. Biol. Chem. 279, 14481–14483 (2004).

    CAS  PubMed  Google Scholar 

  65. 65

    Schröfelbauer, B., Chen, D. & Landau, N.R. A single amino acid of APOBEC3G controls its species-specific interaction with virion infectivity factor (Vif). Proc. Natl. Acad. Sci. USA 101, 3927–3932 (2004).

    PubMed  Google Scholar 

  66. 66

    Xu, H. et al. A single amino acid substitution in human APOBEC3G antiretroviral enzyme confers resistance to HIV-1 virion infectivity factor-induced depletion. Proc. Natl. Acad. Sci. USA 101, 5652–5657 (2004).

    CAS  PubMed  Google Scholar 

  67. 67

    Towers, G., Collins, M. & Takeuchi, Y. Abrogation of Ref1 retrovirus restriction in human cells. J. Virol. 76, 2548–2550 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Stremlau, M. et al. The cytoplasmic body component TRIM5a restricts HIV-1 infection in Old World monkeys. Nature 427, 848–853 (2004).

    CAS  PubMed  Google Scholar 

  69. 69

    Sayah, D.M., Sokolskaja, E., Berthoux, L. & Luban, J. Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature 430, 569–573 (2004).

    CAS  Google Scholar 

  70. 70

    Diaz-Griffero, F. et al. Rapid turnover and polyubiquitylation of the retroviral restriction factor TRIM5. Virology 349, 300–315 (2006).

    CAS  PubMed  Google Scholar 

  71. 71

    Anderson, J.L. et al. Proteasome inhibition reveals that a functional preintegration complex intermediate can be generated during restriction by diverse TRIM5 proteins. J. Virol. 80, 9754–9760 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Stremlau, M. et al. Specific recognition and accelerated uncoating of retroviral capsids by the TRIM5a restriction factor. Proc. Natl. Acad. Sci. USA 103, 5514–5519 (2006).

    CAS  PubMed  Google Scholar 

  73. 73

    Pertel, T. et al. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472, 361–365 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Neil, S., Zang, T. & Bieniasz, P. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).

    CAS  Google Scholar 

  75. 75

    Van Damme, N. et al. The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3, 245–252 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Neil, S., Eastman, S., Jouvenet, N. & Bieniasz, P. HIV-1 Vpu promotes release and prevents endocytosis of nascent retrovirus particles from the plasma membrane. PLoS Pathog. 2, e39 (2006).

    PubMed  PubMed Central  Google Scholar 

  77. 77

    Evans, D.T., Serra-Moreno, R., Singh, R.K. & Guatelli, J.C. BST-2/tetherin: a new component of the innate immune response to enveloped viruses. Trends Microbiol. 18, 388–396 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Cao, W. et al. Regulation of TLR7/9 responses in plasmacytoid dendritic cells by BST2 and ILT7 receptor interaction. J. Exp. Med. 206, 1603–1614 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Matsuda, A. et al. Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways. Oncogene 22, 3307–3318 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Goujon, C. et al. With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Ther. 13, 991–994 (2006).

    CAS  PubMed  Google Scholar 

  81. 81

    Manel, N. et al. A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467, 214–217 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Aravind, L. & Koonin, E.V. The HD domain defines a new superfamily of metal-dependent phosphohydrolases. Trends Biochem. Sci. 23, 469–472 (1998).

    CAS  PubMed  Google Scholar 

  83. 83

    Goldstone, D.C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    CAS  PubMed  Google Scholar 

  84. 84

    Lahouassa, H. et al. SAMHD1 restricts replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat. Immunol. 13, 223–228 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Rice, G. et al. Mutations involved in Aicardi-Goutières syndrome implicate SAMHD1 as regulator of the innate immune response. Nat. Genet. 41, 829–832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Doitsh, G. et al. Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue. Cell 143, 789–801 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Medina, R.A. & García-Sastre, A. Influenza A viruses: new research developments. Nat. Rev. Microbiol. 9, 590–603 (2011).

    CAS  PubMed  Google Scholar 

  89. 89

    Fernandez-Sesma, A. The influenza virus NS1 protein: inhibitor of innate and adaptive immunity. Infect. Disord. Drug Targets 7, 336–343 (2007).

    CAS  PubMed  Google Scholar 

  90. 90

    Pang, I.K. & Iwasaki, A. Inflammasomes as mediators of immunity against influenza virus. Trends Immunol. 32, 34–41 (2011).

    CAS  PubMed  Google Scholar 

  91. 91

    Le Goffic, R. et al. Detrimental contribution of the Toll-like receptor (TLR)3 to influenza A virus-induced acute pneumonia. PLoS Pathog. 2, e53 (2006).

    PubMed  Google Scholar 

  92. 92

    Guillot, L. et al. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J. Biol. Chem. 280, 5571–5580 (2005).

    CAS  PubMed  Google Scholar 

  93. 93

    Pirhonen, J., Sareneva, T., Kurimoto, M., Julkunen, I. & Matikainen, S. Virus infection activates IL-1b and IL-18 production in human macrophages by a caspase-1-dependent pathway. J. Immunol. 162, 7322–7329 (1999).

    CAS  PubMed  Google Scholar 

  94. 94

    Ichinohe, T., Lee, H.K., Ogura, Y., Flavell, R. & Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206, 79–87 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Thomas, P.G. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30, 566–575 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Allen, I.C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556–565 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Brass, A.L. et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139, 1243–1254 (2009).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Shapira, S.D. et al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection. Cell 139, 1255–1267 (2009).

    PubMed  PubMed Central  Google Scholar 

  99. 99

    Zhu, H., Cong, J.P. & Shenk, T. Use of differential display analysis to assess the effect of human cytomegalovirus infection on the accumulation of cellular RNAs: induction of interferon-responsive RNAs. Proc. Natl. Acad. Sci. USA 94, 13985–13990 (1997).

    CAS  PubMed  Google Scholar 

  100. 100

    Nicholl, M.J., Robinson, L.H. & Preston, C.M. Activation of cellular interferon-responsive genes after infection of human cells with herpes simplex virus type 1. J. Gen. Virol. 81, 2215–2218 (2000).

    CAS  PubMed  Google Scholar 

  101. 101

    Siegrist, F., Ebeling, M. & Certa, U. The small interferon-induced transmembrane genes and proteins. J. Interferon Cytokine Res. 31, 183–197 (2011).

    CAS  PubMed  Google Scholar 

  102. 102

    Gutterman, J.U. Cytokine therapeutics: lessons from interferon alpha. Proc. Natl. Acad. Sci. USA 91, 1198–1205 (1994).

    CAS  PubMed  Google Scholar 

  103. 103

    Yang, G., Xu, Y., Chen, X. & Hu, G. IFITM1 plays an essential role in the antiproliferative action of interferon-g. Oncogene 26, 594–603 (2007).

    CAS  PubMed  Google Scholar 

  104. 104

    D'Andrea, L.D. & Regan, L. TPR proteins: the versatile helix. Trends Biochem. Sci. 28, 655–662 (2003).

    CAS  Google Scholar 

  105. 105

    Guo, J., Hui, D.J., Merrick, W.C. & Sen, G.C. A new pathway of translational regulation mediated by eukaryotic initiation factor 3. EMBO J. 19, 6891–6899 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Li, Y. et al. ISG56 is a negative-feedback regulator of virus-triggered signaling and cellular antiviral response. Proc. Natl. Acad. Sci. USA 106, 7945–7950 (2009).

    CAS  Google Scholar 

  107. 107

    Daffis, S. et al. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468, 452–456 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Züst, R. et al. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12, 137–143 (2011).

    PubMed  PubMed Central  Google Scholar 

  109. 109

    Pichlmair, A. et al. IFIT1 is an antiviral protein that recognizes 5′-triphosphate RNA. Nat. Immunol. 12, 624–630 (2011).

    CAS  PubMed  Google Scholar 

  110. 110

    Salomon, R. et al. Mx1 gene protects mice against the highly lethal human H5N1 influenza virus. Cell Cycle 6, 2417–2421 (2007).

    CAS  PubMed  Google Scholar 

  111. 111

    Tumpey, T.M. et al. The Mx1 gene protects mice against the pandemic 1918 and highly lethal human H5N1 influenza viruses. J. Virol. 81, 10818–10821 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Pavlovic, J., Haller, O. & Staeheli, P. Human and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle. J. Virol. 66, 2564–2569 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Dittmann, J. et al. Influenza A virus strains differ in sensitivity to the antiviral action of Mx-GTPase. J. Virol. 82, 3624–3631 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Zimmermann, P., Manz, B., Haller, O., Schwemmle, M. & Kochs, G. The viral nucleoprotein determines Mx sensitivity of influenza A viruses. J. Virol. 85, 8133–8140 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Gao, S. et al. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 465, 502–506 (2010).

    CAS  PubMed  Google Scholar 

  116. 116

    Kane, M. et al. Innate immune sensing of retroviral infection via Toll-like receptor 7 occurs upon viral entry. Immunity 35, 135–145 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. 117

    Martin, M.P. et al. Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nat. Genet. 39, 733–740 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. 118

    Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).

    CAS  PubMed  Google Scholar 

  119. 119

    Löchelt, M. et al. The antiretroviral activity of APOBEC3 is inhibited by the foamy virus accessory Bet protein. Proc. Natl. Acad. Sci. USA 102, 7982–7987 (2005).

    PubMed  Google Scholar 

  120. 120

    Turelli, P., Mangeat, B., Jost, S., Vianin, S. & Trono, D. Inhibition of hepatitis B virus replication by APOBEC3G. Science 303, 1829 (2004).

    PubMed  Google Scholar 

  121. 121

    Harris, R.S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003).

    CAS  PubMed  Google Scholar 

  122. 122

    Powell, R.D., Holland, P.J., Hollis, T. & Perrino, F.W. The Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J. Biol. Chem. 286, 43596–43600 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Feeley, E.M. et al. IFITM3 inhibits influenza A virus infection by preventing cytosolic entry. PLoS Pathog. 7, e1002337 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Malathi, K., Dong, B., Gale, M. & Silverman, R.H. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448, 816–819 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Nan Yan or Zhijian J Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yan, N., Chen, Z. Intrinsic antiviral immunity. Nat Immunol 13, 214–222 (2012). https://doi.org/10.1038/ni.2229

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing