Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A new synthesis for antibody-mediated immunity

Subjects

Abstract

The view that immunoglobulins function largely by potentiating neutralization, cytotoxicity or phagocytosis is being replaced by a new synthesis whereby antibodies participate in all aspects of the immune response, from protecting the host at the earliest time of encounter with a microbe to later challenges. Perhaps the most transformative concept is that immunoglobulins manifest emergent properties, from their structure and function as individual molecules to their interactions with microbial targets and the host immune system. Given that emergent properties are neither reducible to first principles nor predictable, there is a need for new conceptual approaches for understanding antibody function and mechanisms of antibody immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of pro- and anti-inflammatory antibodies on three hosts that differ in their immune response to infection, as viewed in the context of the damage-response framework42.

Similar content being viewed by others

References

  1. Jerne, N.K. Towards a network theory of the immune system. Ann. Immunol. (Paris) 125C, 373–389 (1974).

    CAS  Google Scholar 

  2. Hébert, J., Bernier, D., Boutin, Y., Jobin, M. & Mourad, W. Generation of anti-idiotypic and anti-anti-idiotypic monoclonal antibodies in the same fusion. Support of Jerne's Network Theory. J. Immunol. 144, 4256–4261 (1990).

    PubMed  Google Scholar 

  3. Silverstein, A.M. History of immunology. Cellular versus humoral immunity: determinants and consequences of an epic 19th century battle. Cell. Immunol. 48, 208–221 (1979).

    Article  CAS  PubMed  Google Scholar 

  4. Glatman-Freedman, A. & Casadevall, A. Serum therapy for tuberculosis revisited: a reappraisal of the role of antibody-mediated immunity against Mycobacterium tuberculosis. Clin. Microbiol. Rev. 11, 514–532 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Casadevall, A. Antibody-mediated immunity against intracellular pathogens: two-dimensional thinking comes full circle. Infect. Immun. 71, 4225–4228 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Teitelbaum, R. et al. A monoclonal antibody recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival. Proc. Natl. Acad. Sci. USA 95, 15688–15693 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamasur, B. et al. A mycobacterial lipoarabinomannan specific monoclonal antibody and its F(ab′) fragment prolong survival of mice infected with Mycobacterium tuberculosis. Clin. Exp. Immunol. 138, 30–38 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Williams, A. et al. Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lungs. Immunology 111, 328–333 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pethe, K. et al. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412, 190–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Maglione, P.J., Xu, J. & Chan, J. B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. J. Immunol. 178, 7222–7234 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Maglione, P.J., Xu, J., Casadevall, A. & Chan, J. Fcγ receptors regulate immune activation and susceptibility during Mycobacterium tuberculosis infection. J. Immunol. 180, 3329–3338 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Casadevall, A. & Pirofski, L.A. A reappraisal of humoral immunity based on mechanisms of antibody-mediated protection against intracellular pathogens. Adv. Immunol. 91, 1–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Russo, R.T. & Mariano, M. B-1 cell protective role in murine primary Mycobacterium bovis bacillus Calmette-Guerin infection. Immunobiology 215, 1005–1014 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Subramaniam, K. et al. IgM+ memory B cell expression predicts HIV-associated cryptococcosis status. J. Infect. Dis. 200, 244–251 (2009).

    Article  PubMed  CAS  Google Scholar 

  15. Burns, T., Abadi, M. & Pirofski, L.A. Modulation of the lung inflammatory response to serotype 8 pneumococcal infection by a human immunoglobulin m monoclonal antibody to serotype 8 capsular polysaccharide. Infect. Immun. 73, 4530–4538 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fabrizio, K., Groner, A., Boes, M. & Pirofski, L.A. A human monoclonal immunoglobulin M reduces bacteremia and inflammation in a mouse model of systemic pneumococcal infection. Clin. Vaccine Immunol. 14, 382–390 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian, H., Weber, S., Thorkildson, P., Kozel, T.R. & Pirofski, L.A. Efficacy of opsonic and nonopsonic serotype 3 pneumococcal capsular polysaccharide-specific monoclonal antibodies against intranasal challenge with Streptococcus pneumoniae in mice. Infect. Immun. 77, 1502–1513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coleman, J.R., Papamichail, D., Yano, M., Garcia-Suarez, M.M. & Pirofski, L.A. Designed reduction of Streptococcus pneumoniae pathogenicity via synthetic changes in virulence factor codon-pair bias. J. Infect. Dis. 203, 1264–1273 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Weber, S.E., Tian, H. & Pirofski, L.A. CD8+ cells enhance resistance to pulmonary serotype 3 Streptococcus pneumoniae infection in mice. J. Immunol. 186, 432–442 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. LeMessurier, K., Hacker, H., Tuomanen, E. & Redecke, V. Inhibition of T cells provides protection against early invasive pneumococcal disease. Infect. Immun. 78, 5287–5294 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Watson, D.A., Musher, D.M., Jacobson, J.W. & Verhoef, J. A brief history of the pneumococcus in biomedical research: a panoply of scientific discovery. Clin. Infect. Dis. 17, 913–924 (1993).

    Article  CAS  PubMed  Google Scholar 

  22. Baumgarth, N. et al. Innate and acquired humoral immunities to influenza virus are mediated by distinct arms of the immune system. Proc. Natl. Acad. Sci. USA 96, 2250–2255 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Carsetti, R., Rosado, M.M. & Wardmann, H. Peripheral development of B cells in mouse and man. Immunol. Rev. 197, 179–191 (2004).

    Article  PubMed  Google Scholar 

  24. Griffin, D.O., Holodick, N.E. & Rothstein, T.L. Human B1 cells in umbilical cord and adult peripheral blood express the novel phenotype CD20+CD27+CD43+CD70. J. Exp. Med. 208, 67–80 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rajan, B., Ramalingam, T. & Rajan, T.V. Critical role for IgM in host protection in experimental filarial infection. J. Immunol. 175, 1827–1833 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Boes, M., Prodeus, A.P., Schmidt, T., Carroll, M.C. & Chen, J. A critical role of natural immunoglobulin M in immediate defense against systemic bacterial infection. J. Exp. Med. 188, 2381–2386 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Subramaniam, K.S. et al. The absence of serum IgM enhances the susceptibility of mice to pulmonary challenge with Cryptococcus neoformans. J. Immunol. 184, 5755–5767 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Jayasekera, J.P., Moseman, E.A. & Carroll, M.C. Natural antibody and complement mediate neutralization of influenza virus in the absence of prior immunity. J. Virol. 81, 3487–3494 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Diamond, M.S. et al. A critical role for induced IgM in the protection against West Nile virus infection. J. Exp. Med. 198, 1853–1862 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kruetzmann, S. et al. Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. J. Exp. Med. 197, 939–945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nimmerjahn, F. & Ravetch, J.V. The antiinflammatory activity of IgG: the intravenous IgG paradox. J. Exp. Med. 204, 11–15 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Anthony, R.M., Kobayashi, T., Wermeling, F. & Ravetch, J.V. Intravenous gammaglobulin suppresses inflammation through a novel TH2 pathway. Nature 475, 110–113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, F. & Ravetch, J.V. Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science 333, 1030–1034 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Skurnik, D. et al. Animal and human antibodies to distinct Staphylococcus aureus antigens mutually neutralize opsonic killing and protection in mice. J. Clin. Invest. 120, 3220–3233 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pirofski, L.A. Why antibodies disobey the Hippocratic Oath and end up doing harm: a new clue. J. Clin. Invest. 120, 3099–3102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lendvai, N., Qu, X., Hsueh, W. & Casadevall, A. Mechanism for the isotype dependence of antibody-mediated toxicity in Cryptococcus neoformans infected mice. J. Immunol. 164, 4367–4374 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Feldmesser, M., Mednick, A. & Casadevall, A. Antibody-mediated protection in murine Cryptococcus neoformans infection is associated with subtle pleotrophic effects on the cytokine and leukocyte response. Infect. Immun. 70, 1571–1580 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nimmerjahn, F. & Ravetch, J.V. Antibody-mediated modulation of immune responses. Immunol. Rev. 236, 265–275 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Nimmerjahn, F. & Ravetch, J.V. FcgammaRs in health and disease. Curr. Top. Microbiol. Immunol. 350, 105–125 (2011).

    CAS  PubMed  Google Scholar 

  40. Casadevall, A. & Pirofski, L. Host-Pathogen Interactions: The basic concepts of microbial commensalisms, colonization, infection, and disease. Infect. Immun. 68, 6511–6518 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Casadevall, A. & Pirofski, L. Host-pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infect. Immun. 67, 3703–3713 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Casadevall, A. & Pirofski, L. The damage-response framework of microbial pathogenesis. Nat. Rev. Microbiol. 1, 17–24 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Connolly, S.E., Thanassi, D.G. & Benach, J.L. Generation of a complement-independent bactericidal IgM against a relapsing fever Borrelia. J. Immunol. 172, 1191–1197 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. LaRocca, T.J., Katona, L.I., Thanassi, D.G. & Benach, J.L. Bactericidal action of a complement-independent antibody against relapsing fever Borrelia resides in its variable region. J. Immunol. 180, 6222–6228 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Magliani, W. et al. Protective antifungal yeast killer toxin-like antibodies. Curr. Mol. Med. 5, 443–452 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Brena, S. et al. Fungicidal monoclonal antibody C7 interferes with iron acquisition in Candida albicans. Antimicrob. Agents Chemother. 55, 3156–3163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Torosantucci, A. et al. A novel glyco-conjugate vaccine against fungal pathogens. J. Exp. Med. 202, 597–606 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Alviano, D.S. et al. Melanin from Fonsecaea pedrosoi induces production of human antifungal antibodies and enhances the antimicrobial efficacy of phagocytes. Infect. Immun. 72, 229–237 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wentworth, P. Jr. et al. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 298, 2195–2199 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Yano, M., Gohil, S., Coleman, J.R., Manix, C. & Pirofski, L.A. Antibodies to Streptococcus pneumoniae capsular polysaccharide enhance pneumococcal quorum sensing. mBio doi:10.1128/mBio.00176-11 (13 September 2011).

  51. Vouldoukis, I. et al. IgE mediates killing of intracellular Toxoplasma gondii by human macrophages through CD23-dependent, interleukin-10 sensitive pathway. PLoS ONE 6, e18289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lampert, P.W., Joseph, B.S. & Oldstone, M.B. Antibody-induced capping of measles virus antigens on plasma membrane studied by electron microscopy. J. Virol. 15, 1248–1255 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Desplanques, A.S., Nauwynck, H.J., Tilleman, K., Deforce, D. & Favoreel, H.W. Tyrosine phosphorylation and lipid raft association of pseudorabies virus glycoprotein E during antibody-mediated capping. Virology 362, 60–66 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. McClelland, E.E., Nicola, A.M., Prados-Rosales, R. & Casadevall, A. Ab binding alters gene expression in Cryptococcus neoformans and directly modulates fungal metabolism. J. Clin. Invest. 120, 1355–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Torres, M. & Casadevall, A. The immunoglobulin constant region contributes to affinity and specificity. Trends Immunol. 29, 91–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Edelson, B.T., Cossart, P. & Unanue, E.R. Cutting edge: paradigm revisited: antibody provides resistance to Listeria infection. J. Immunol. 163, 4087–4090 (1999).

    CAS  PubMed  Google Scholar 

  57. Edelson, B.T. & Unanue, E.R. Intracellular antibody neutralizes Listeria growth. Immunity 14, 503–512 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Nosanchuk, J.D., Steenbergen, J.N., Shi, L., Deepe, G.S. Jr. & Casadevall, A. Antibodies to a cell surface histone-like protein protect against Histoplasma capsulatum. J. Clin. Invest. 112, 1164–1175 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Torres, M., May, R., Scharff, M.D. & Casadevall, A. Variable-region identical antibodies differing in isotype demonstrate differences in fine specificity and isotype. J. Immunol. 174, 2132–2142 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Torosantucci, A. et al. Protection by anti-β-glucan antibodies is associated with restricted β-1,3 glucan binding specificity and inhibition of fungal growth and adherence. PLoS ONE 4, e5392 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Torres, M., Fernandez-Fuentes, N., Fiser, A. & Casadevall, A. The immunoglobulin heavy chain constant region affects kinetic and thermodynamic parameters of antibody variable region interactions with antigen. J. Biol. Chem. 282, 13917–13927 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Abboud, N. et al. A requirement for FcγR in antibody-mediated bacterial toxin neutralization. J. Exp. Med. 207, 2395–2405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wong, S.E., Sellers, B.D. & Jacobson, M.P. Effects of somatic mutations on CDR loop flexibility during affinity maturation. Proteins 79, 821–829 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Wedemayer, G.J., Patten, P.A., Wang, L.H., Schultz, P.G. & Stevens, R.C. Structural insights into the evolution of an antibody combining site. Science 276, 1665–1669 (1997).

    Article  CAS  PubMed  Google Scholar 

  65. Kirkham, P.M., Mortari, F., Newton, J.A. & Schroeder, H.W. Immunoglobulin VH clan and family identity predicts variable domain structure and may influence antigen binding. EMBO J. 11, 603–609 (1991).

    Article  Google Scholar 

  66. Varshney, A.K. et al. Generation, characterization and epitope mapping of neutralizing and protective monoclonal antibodies against staphylococcal enterotoxin B induced lethal shock. J. Biol. Chem. 286, 9737–9747 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Beernink, P.T. et al. Fine antigenic specificity and cooperative bactericidal activity of monoclonal antibodies directed at the meningococcal vaccine candidate factor h-binding protein. Infect. Immun. 76, 4232–4240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Taborda, C.P. & Casadevall, A. Immunoglobulin M efficacy against Cryptococcus neoformans: mechanism, dose dependence and prozone-like effects in passive protection experiments. J. Immunol. 66, 2100–2107 (2001).

    Article  Google Scholar 

  69. Taborda, C.P., Rivera, J., Zaragoza, O. & Casadevall, A. More is not necessarily better: 'Prozone-like' effects in passive immunization with Immunoglobulin G. J. Immunol. 140, 3621–3630 (2003).

    Article  Google Scholar 

  70. Rivera, J. & Casadevall, A. Mouse genetic background is a major determinant of isotype-related differences for antibody-mediated protective efficacy against Cryptococcus neoformans. J. Immunol. 174, 8017–8026 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Casadevall, A., Fang, F.C. & Pirofski, L.A. Microbial virulence as an emergent property: consequences and opportunities. PLoS Pathog. 7, e1002136 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Casadevall, A. Antibody immunity and invasive fungal infections. Infect. Immun. 63, 4211–4218 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Dromer, F., Charreire, J., Contrepois, A., Carbon, C. & Yeni, P. Protection of mice against experimental cryptococcosis by anti-Cryptococcus neoformans monoclonal antibody. Infect. Immun. 55, 749–752 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schlageter, A.M. & Kozel, T.R. Opsonization of Cryptococcus neoformans by a family of isotype-switch variant antibodies specific for the capsular polysaccharide. Infect. Immun. 58, 1914–1918 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mukherjee, J., Scharff, M.D. & Casadevall, A. Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect. Immun. 60, 4534–4541 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fleuridor, R., Lees, A. & Pirofski, L. A cryptococcal capsular polysaccharide mimotope prolongs the survival of mice with Cryptococcus neoformans infection. J. Immunol. 166, 1087–1096 (2001).

    Article  CAS  PubMed  Google Scholar 

  77. Casadevall, A. & Pirofski, L. Insights into mechanisms of antibody-mediated immunity from studies with Cryptococcus neoformans. Curr. Mol. Med. 5, 421–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Ponge, J.F. Emergent properties from organisms to ecosystems: towards a realistic approach. Biol. Rev. Camb. Philos. Soc. 80, 403–411 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ablowitz, R. The theory of emergence. Philos. Sci. 6, 1–16 (1939).

    Article  Google Scholar 

  80. Baylis, C.A. The philosophic functions of emergence. Philos. Rev. 38, 372–384 (1929).

    Article  Google Scholar 

  81. Robbins, J.B., Schneerson, R. & Szu, S.C. Perspective: Hypothesis: serum IgG antibody is sufficient to confer protection against infectious diseases by inactivating the inoculum. J. Infect. Dis. 171, 1387–1398 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Casadevall, A. & Pirofski, L.A. Antibody-mediated regulation of cellular immunity and the inflammatory response. Trends Immunol. 24, 474–478 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M.D. Scharff for critical reading of this manuscript and suggestions. Supported by the US National Institutes of Health (AI45459, AI44374, AI033774 and HL059842) and the Northeastern Biodefense Center (5U54AI057158-08 – Lipkin to A.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Casadevall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casadevall, A., Pirofski, La. A new synthesis for antibody-mediated immunity. Nat Immunol 13, 21–28 (2012). https://doi.org/10.1038/ni.2184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing