Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TGF-β induces the expression of the adaptor Ndfip1 to silence IL-4 production during iTreg cell differentiation

Abstract

Mice deficient in the adaptor Ndfip1 develop inflammation at sites of environmental antigen exposure. We show here that such mice had fewer inducible regulatory T cells (iTreg cells). In vitro, Ndfip1-deficient T cells expressed normal amounts of the transcription factor Foxp3 during the first 48 h of iTreg cell differentiation; however, this expression was not sustained. Abortive Foxp3 expression was caused by production of interleukin 4 (IL-4) by Ndfip1−/− cells. We found that Ndfip1 expression was transiently upregulated during iTreg cell differentiation in a manner dependent on transforming growth factor-β (TGF-β). Once expressed, Ndfip1 promoted degradation of the transcription factor JunB mediated by the E3 ubiquitin ligase Itch, thus preventing IL-4 production. On the basis of our data, we propose that TGF-β signaling induces Ndfip1 expression to silence IL-4 production, thus permitting iTreg cell differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lower frequency of iTreg cells in the small bowel of Ndfip1−/− mice.
Figure 2: Impaired conversion of naive Ndfip1-deficient T cells into iTreg cells.
Figure 3: Ndfip1−/− and itchy mutant T cells are defective in conversion into iTreg cells.
Figure 4: Foxp3 expression decreases in Ndfip1−/− T cells after day 2.
Figure 5: Depletion of IL-4 restores the conversion in Ndfip1- and Itch-deficient T cells into iTreg cell.
Figure 6: Less inflammatory disease in Ndfip1−/− mice lacking IL-4.
Figure 7: Ndfip1 expression peaks early during iTreg cell differentiation to attenuate JunB expression.

Similar content being viewed by others

References

  1. Bluestone, J.A. & Abbas, A.K. Natural versus adaptive regulatory T cells. Nat. Rev. Immunol. 3, 253–257 (2003).

    Article  CAS  Google Scholar 

  2. Curotto de Lafaille, M.A. & Lafaille, J.J. Natural and adaptive Foxp3+ regulatory T cells: more of the same or division of labor. Immunity 30, 626–635 (2009).

    Article  CAS  Google Scholar 

  3. Brunkow, M.E. et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet. 27, 68–73 (2001).

    Article  CAS  Google Scholar 

  4. Bennett, C.L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  Google Scholar 

  5. Wildin, R.S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  Google Scholar 

  6. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  7. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  Google Scholar 

  8. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  Google Scholar 

  9. Josefowicz, S.Z. & Rudensky, A.Y. Control of regulatory T cell lineage commitment and maintenance. Immunity 30, 616–625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Malek, T.R. & Castro, I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 33, 153–165 (2010).

    Article  CAS  Google Scholar 

  11. Xu, L., Kitani, A. & Strober, W. Molecular mechanisms regulating TGF-beta-induced Foxp3 expression. Mucosal Immunol. 3, 230–238 (2010).

    Article  CAS  Google Scholar 

  12. Sakaguchi, S., Wing, K. & Miyara, M. Regulatory T cells—a brief history and perpective. Eur. J. Immunol. 37, S116–S123 (2007).

    Article  CAS  Google Scholar 

  13. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-beta induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  Google Scholar 

  14. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6, 1219–1227 (2005).

    Article  CAS  Google Scholar 

  15. Apostolou, I. & von Boehmer, H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199, 1401–1408 (2004).

    Article  CAS  Google Scholar 

  16. Fantini, M.C. et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25 T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172, 5149–5153 (2004).

    Article  CAS  Google Scholar 

  17. Park, H.B., Paik, D.J., Jang, E., Hong, S. & Youn, J. Acquisition of anergic and suppressive activities in transforming growth factor-beta-costimulated CD4+CD25 T cells. Int. Immunol. 16, 1203 (2004).

    Article  CAS  Google Scholar 

  18. Wan, Y.Y. & Flavell, R.A. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl. Acad. Sci. USA 102, 5126–5131 (2005).

    Article  CAS  Google Scholar 

  19. Dardalhon, V. et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells, and together with TGF-β generates IL-9+ IL-10+ Foxp3 effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    Article  CAS  Google Scholar 

  20. Gorelik, L., Fields, P.E. & Flavell, R.A. TGF-β inhibits Th type 2 development through inhibition of GATA-3 expression. J. Immunol. 165, 4773–4777 (2000).

    Article  CAS  Google Scholar 

  21. Tone, Y. et al. Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat. Immunol. 9, 194–202 (2007).

    Article  Google Scholar 

  22. Hefferan, T.E. et al. Overexpression of a nuclear protein, TIEG, mimics transforming growth factor-beta action in human osteoblast cells. J. Biol. Chem. 275, 20255–20259 (2000).

    Article  CAS  Google Scholar 

  23. Venuprasad, K. et al. The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat. Immunol. 9, 245–253 (2008).

    Article  CAS  Google Scholar 

  24. Cao, Z. et al. Kruppel-like factor KLF10 targets transforming growth factor-β to regulate CD4+CD25 T cells and T regulatory cells. J. Biol. Chem. 11, 24914–24924 (2009).

    Article  Google Scholar 

  25. Oliver, P.M. et al. Ndfip1 protein promotes the function of Itch ubiquitin ligase to prevent T cell activation and T helper 2 cell-mediated inflammation. Immunity 25, 929–940 (2006).

    Article  CAS  Google Scholar 

  26. Rooney, J.W., Hoey, T. & Glimcher, L.H. Coordinate and cooperative roles for NF-AT and AP-1 in the regulation of murine IL-4 gene. Immunity 2, 473–483 (1995).

    Article  CAS  Google Scholar 

  27. Li-Weber, M., Giasi, M. & Krammer, P.H. Involvement of Jun and Rel proteins in up-regulation of interleukin-4 gene activity by the T cell accessory molecule CD28. J. Biol. Chem. 273, 32460–32466 (1998).

    Article  CAS  Google Scholar 

  28. Fang, D. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat. Immunol. 3, 281–287 (2002).

    Article  CAS  Google Scholar 

  29. Ramon, H.E. et al. The ubiquitin ligase adaptor Ndfip1 regulates T cell-mediated gastrointestinal inflammation and inflammatory bowel disease susceptibility. Mucosal Immunol. 4, 314–324 (2011).

    Article  CAS  Google Scholar 

  30. Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+ CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9, 632–640 (2008).

    Article  CAS  Google Scholar 

  31. Fontenot, J.D., Dooley, J.L., Farr, A.G. & Rudensky, A.Y. Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med. 202, 901–906 (2005).

    Article  CAS  Google Scholar 

  32. Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  Google Scholar 

  33. Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  Google Scholar 

  34. Siddiqui, K.R. & Powrie, F. CD103+ GALT DCs promote Foxp3+ regulatory T cells. Mucosal Immunol. 1 (suppl. 1), S34–S38 (2008).

    Article  CAS  Google Scholar 

  35. Thornton, A.M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

    Article  CAS  Google Scholar 

  36. Verhagen, J. & Wraith, D.C. Comment on “Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells”. J. Immunol. 185, 7129 (2010).

    Article  CAS  Google Scholar 

  37. Thornton, A.M. & Shevach, E.M. Response to comment on “Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells”. J. Immunol. 185, 7130 (2010).

    Article  CAS  Google Scholar 

  38. Wei, J. et al. Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 104, 18169–18174 (2007).

    Article  CAS  Google Scholar 

  39. Mantel, P.Y. et al. GATA3-driven Th2 responses inhibit TGF-β1-induced FOXP3 expression and the formation of regulatory T cells. PLoS Biol. 5, e329 (2007).

    Article  Google Scholar 

  40. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    Article  CAS  Google Scholar 

  41. Selvaraj, R.K. & Geiger, T.L. A kinetic and dynamic analysis of Foxp3 induced in T cells by TGF-β. J. Immunol. 178, 7667–7677 (2007).

    Article  CAS  Google Scholar 

  42. Chen, Q., Kim, Y.C., Laurence, A., Punkosdy, G.A. & Shevach, E.M. IL-2 controls the stability of Foxp3 expression in TGF-β-induced Foxp3+ T cells in vivo. J. Immunol. 186, 6329–6337 (2011).

    Article  CAS  Google Scholar 

  43. Liao, W. et al. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor α-chain expression. Nat. Immunol. 9, 1288–1296 (2008).

    Article  CAS  Google Scholar 

  44. Jonk, L.J., Itoh, S., Heldin, C.H., ten Dijke, P. & Kruijer, W. Identification and functional characterization of a Smad binding element (SBE) in the JunB promoter that acts as a transforming growth factor-β, activin, and bone morphogenetic protein-inducible enhancer. J. Biol. Chem. 273, 21145–21152 (1998).

    Article  CAS  Google Scholar 

  45. Liang, Q. et al. IL-2 and IL-4 stimulate MEK1 expression and contribute to T cell resistance against suppression by TGF-β and IL-10 in asthma. J. Immunol. 185, 5704–5713 (2010).

    Article  CAS  Google Scholar 

  46. Wang, J., Ioan-Facsinay, A., van der Voort, E.I., Huizinga, T.W. & Toes, R.E. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37, 129–138 (2007).

    Article  CAS  Google Scholar 

  47. Ramsdell, F., Jenkins, M., Dinh, Q. & Fowlkes, B.J. The majority of CD4+CD8thymocytes are functionally immature. J. Immunol. 147, 1779–1785 (1991).

    CAS  PubMed  Google Scholar 

  48. Cote-Sierra, J. et al. Interleukin-2 plays a central role in Th2 differentiation. Proc. Natl. Acad. Sci. USA 101, 3880–3885 (2004).

    Article  CAS  Google Scholar 

  49. Li, B., Tournier, C., Davis, R.J. & Flavell, R.A. Regulation of IL-4 expression by the transcription factor JunB during T helper cell differentiation. EMBO J. 18, 420–432 (1999).

    Article  Google Scholar 

  50. Park, J., Kim, S.H., Li, Q., Chang, Y.T. & Kim, T.S. Inhibition of interleukin-4 production in activated T cells via the downregulation of AP-1/NF-AT activation by N-lauroyl-D-erythro-sphingosine and N-lauroyl-d-erythro-C20-sphingosine. Biochem. Pharmacol. 71, 1229–1239 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Ramon for discussions and for help with setting up iTreg cell culture conditions; A. Bhandoola for critical reading of the manuscript; J.K. Burkhardt for discussions; A. Laroche for technical assistance; and the staff of the flow cytometry core at the University of Pennsylvania. Supported by the U.S. National Institutes of Health (RO3 AR057144, 1F32AI085837 and R01AI093566).

Author information

Authors and Affiliations

Authors

Contributions

A.M.B. designed and did experiments and wrote the manuscript; N.R.-H., C.R.R. and E.A.N. did experiments and contributed data; and P.M.O. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Paula M Oliver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Methods (PDF 1038 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beal, A., Ramos-Hernández, N., Riling, C. et al. TGF-β induces the expression of the adaptor Ndfip1 to silence IL-4 production during iTreg cell differentiation. Nat Immunol 13, 77–85 (2012). https://doi.org/10.1038/ni.2154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2154

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing