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Dendritic cells (DCs) are strategically positioned within organs 
and tissues to optimize the chances of antigen encounter. In the 
spleen, DCs survey the bloodstream and form an integral part of 
the reticuloendothelial system, a network of phagocytic cells from  
the spleen and liver that capture antigens, including viruses and bac-
teria. Macrophages constitute the majority of phagocytic cells in the 
reticuloendothelial system, and their chief role is to clear and destroy 
captured particles. DCs, in contrast, ‘preserve’ antigenic information to  
initiate immune responses1. Consequently, the spleen actively con-
tributes to maintaining sterility of the bloodstream, and the captured 
material simultaneously serves as an immediate source of antigen for 
the developing immune response. Opsonization with complement 
and antibody facilitates the localization of circulating antigen to the 
spleen2,3, and aids its deposition in the dense network of specialized 
macrophages, B cells and DCs known as the marginal zone4. Among 
the DCs in the marginal zone are CD8α+ DCs5, a subset that has 
important roles in cross-presentation, homeostasis and tolerance. In 
addition, CD8α+ DCs collaborate with marginal zone macrophages 
in the generation of cytotoxic CD8+ T cell responses6.

Effective CD8+ T cell responses are vital for controlling intra-
cellular pathogens such as Listeria monocytogenes. Infection of mice 
with this well-characterized, Gram-positive, facultative intracellular 
bacterium (which can cause severe septic infections in neonates, preg-
nant women or immunocompromised people) has contributed to the 

understanding of T cell–mediated immunity7. DCs are indispensable 
for the induction of anti-listerial CD8+ T cell immunity8,9 and recall 
responses10, enabling individual naive L. monocytogenes–specific CD8+ 
precursor T cells to proliferate and differentiate into a full range of 
effector and memory T cell populations11. Furthermore, CD8α+ DCs 
are the principal DC subset that initiates L. monocytogenes–directed 
CD8+ T cell immunity12. Notably, the splenic CD8α+ DC popula-
tion also provides systemic L. monocytogenes with an early survival 
niche and forms the origin of further bacterial spread13,14. Systemic 
L. monocytogenes are rapidly transported to the marginal zone of the 
mouse spleen13,15 and are taken up by CD8α+ DCs. Subsequently,  
L. monocytogenes escape the phagolysosome and spread to adjacent 
cells and the rest of the organ, propelled by a mechanism of actin 
polymerization. Thus, DCs have a dual role during L. monocytogenes 
infection: they are vital for the induction of effective T cell immunity, 
but they also allow colonization by L. monocytogenes. Splenectomized 
mice show greater resistance to infection with L. monocytogenes16, 
which illustrates this dual role of the spleen and its DCs.

Because CD8α+ DCs have a crucial role in infection and immunity, 
we set out to determine the factors that guide systemic bacteria to 
this spleen-resident cell type. We used the ability of L. monocytogenes 
to survive within CD8α+ DCs, which, in combination with sorting 
of splenocytes from infected mice by flow cytometry, allowed us to 
detect rare and viable intracellular bacteria within defined splenocyte 
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The acquisition of pathogen-derived antigen by dendritic cells (DCs) is a key event in the generation of cytotoxic CD8+ T cell 
responses. In mice, the intracellular bacterium Listeria monocytogenes is directed from the blood to splenic CD8a+ DCs. 
We report that L. monocytogenes rapidly associated with platelets in the bloodstream in a manner dependent on GPIb and 
complement C3. Platelet association targeted a small but immunologically important portion of L. monocytogenes to splenic 
CD8a+ DCs, diverting bacteria from swift clearance by other, less immunogenic phagocytes. Thus, an effective balance is 
established between maintaining sterility of the circulation and induction of antibacterial immunity by DCs. Other Gram-positive 
bacteria also were rapidly tagged by platelets, revealing a broadly active shuttling mechanism for systemic bacteria.
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subsets under different experimental conditions17. We found that  
L. monocytogenes associated with platelets in the circulation, and 
that this association was required for efficient shuttling of bacteria 
to CD8α+ DCs in the spleen. Moreover, association between platelets 
and L. monocytogenes was mediated by the covalent opsonizing com-
plement factor C3, and platelet receptor GPIb was critically involved 
in this interaction. C3-mediated platelet association was common 
among diverse Gram-positive bacteria, including species of clinical 
relevance. Absence of complement-mediated platelet association led 
to accelerated clearance of L. monocytogenes from the bloodstream. 
Thus, platelet adherence balances rapid destruction of systemic 
 bacteria by phagocytes of the reticuloendothelial system, while divert-
ing a small but important portion of viable bacteria to the immunity-
 inducing CD8α+ DC compartment. Indeed, we observed significantly 
lower antibacterial cytotoxic CD8+ T cell responses in experimental 
settings in which L. monocytogenes could not adhere to platelets and 
effectively reach CD8α+ DCs. Moreover, our data clarify bacterial 
adherence in the circulation during Gram-positive bacteremia.

RESULTS
Complement allows spleen colonization by L. monocytogenes 
Systemic L. monocytogenes rapidly localize to the splenic marginal 
zone and infect CD8α+ DCs, which are then used as a starting point 
for the spread of bacteria to other splenocytes and consequently the 
entire organ13–15. Because the complement system influences the 
clearance of bacteria from the bloodstream and their localization to 
the spleen2, we determined whether complement was involved in tar-
geting L. monocytogenes to splenic CD8α+ DCs. Thus, we screened the 
degree of splenic L. monocytogenes colonization in mice specifically 
lacking the covalent opsonizing factor C3, the most abundant and 
central factor of the complement system.

We found that during the course of infection, bacterial burdens in 
the spleen were much lower in C3−/− mice than in C3+/+ wild-type 
control mice. After 1 d of infection, bacterial burdens in the spleens 
of C3−/− mice were significantly lower than those in wild-type mice 
(Fig. 1a). Ineffective colonization of the spleen without a function-
ing complement system was most evident at 3 d after inoculation, 
when bacterial concentrations peaked in wild-type mice but in C3−/− 
mice remained in a range similar to that observed on day 1 (Fig. 1b).  

We administered an infectious dose that C57BL/6 wild-type mice over-
come within 7 d (0.1 of the median lethal dose), and accordingly both 
mouse strains had no detectable bacterial infection at that time point 
(Fig. 1c). Although the lower bacterial burden in C3−/− mice might 
seem counterintuitive given the well-established role of the comple-
ment system in thwarting microbial infection via opsonization and 
lysis, these findings led us to hypothesize a complement-dependent 
shuttling pathway for L. monocytogenes to its early survival niche.

To verify the role of complement during early L. monocytogenes 
infection, we depleted wild-type mice of C3 by systemic administra-
tion of cobra venom factor (CVF), which diminished circulating C3 
to ~10% of the normal wild-type concentration (Fig. 1d). In addition 
to serving as a transient depletion model, independent of genetic C3 
deficiency, CVF treatment allows control over the time frame of C3 
deficiency. In this manner, we found that C3 depletion starting before 
infection (a situation simulating genetic C3 deficiency) resulted in 
greater resistance to L. monocytogenes infection, as shown by signifi-
cantly lower spleen burdens 3 d after infection (Fig. 1e). In contrast, 
C3 depletion starting shortly after inoculation did not enhance resist-
ance to L. monocytogenes (Fig. 1e). Thus, transient C3 depletion with 
CVF before infection confirmed our finding of enhanced resistance of 
genetically C3-deficient mice to L. monocytogenes (Fig. 1b), whereas 
depletion immediately after infection indicated a role for C3 during 
the earliest phases of infection.

In addition to covalent opsonization with C3b, activated C3 also 
gives rise to anaphylatoxin C3a, which promotes inflammation and 
chemotaxis. To exclude the possibility that greater resistance of C3−/− 
and CVF-depleted mice to L. monocytogenes infection was due to the 
action of C3a, rather than opsonizing C3b, we subjected mice defi-
cient in the receptor for C3a (C3ar1−/−) to the same infection protocol. 
We assessed splenic L. monocytogenes burdens at day 3 after infec-
tion and found no difference between C3ar1−/− mice and wild-type 
control mice (Fig. 1f), which excluded the possibility that C3a was 
the complement activation product relevant to the observed pheno-
type. Instead, these results indicated that during the earliest moments 
of systemic infection, opsonic C3 promotes splenic colonization  
with L. monocytogenes.

CD8a+ DCs gain access to systemic bacteria via complement
Given the crucial role of CD8α+ DCs in colonization of the spleen14, 
the results reported above (Fig. 1) were consistent with a role for com-
plement in directing blood-borne L. monocytogenes to splenic CD8α+ 
DCs. To assess the influence of C3 on early splenic infection and 
cellular tropism, we generated wild-type or C3−/− serum-opsonized  
L. monocytogenes inoculums for administration into C3−/− mice. 
In vitro incubation of L. monocytogenes with serum from wild-type 
mice led to deposition of C3 onto the bacterial surface, but incu-
bation with serum from C3−/− mice did not (Fig. 2a), as has been 
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Figure 1 Complement C3 mediates efficient L. monocytogenes (LM) infection  
of the spleen. (a–c) Splenic L. monocytogenes burden in C3−/− or C3+/+ 
wild-type (WT) mice at 1 d (a), 3 d (b) or 7 d (c) after intravenous infection.  
(d) Enzyme-linked immunosorbent assay (ELISA) of the systemic depletion 
of C3 from serum by CVF at t = 0. (e) Splenic L. monocytogenes burdens at 
3 d after infection in mice depleted of C3 by CVF injection starting before 
(t = −20 h, −1 h and +20 h; middle) or shortly after (t = +30 min  
and +20 h; right) L. monocytogenes infection (t = 0), compared with 
control wild-type mice (left). (f) Splenic L. monocytogenes burdens in 
C3ar1−/− or wild-type mice 3 d after intravenous infection. Dashed lines 
indicate detection limit (a–c,e,f) or 50% of maximum absorbance (d).  
NS, not significant. P values, unpaired, two-tailed Student’s t-test.  
Data represent two or more independent experiments (mean ± s.d. of  
three or more mice).
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reported18. Moreover, opsonization did not affect bacterial viability,  
and we retrieved equal numbers of viable L. monocytogenes from  
each respective inoculum (Fig. 2b). As early as 1 h after infec-
tion, thus well before we expected substantial bacterial replica-
tion, we detected lower bacterial burdens in spleens of C3−/− mice 
when the L. monocytogenes inoculum had been incubated in C3−/− 
serum than when the inoculum was incubated with wild-type  
serum (Fig. 2c).

Next we used the ability of L. monocytogenes to survive within 
CD8α+ DCs and flow cytometry–sorted various phagocytic cell popu-
lations from spleens of C3−/− mice at 1 h after they had been inocu-
lated with wild-type or C3−/− serum-opsonized L. monocytogenes, 
respectively. Subsequently, the sorted populations were lysed and we 
assessed the colony-forming units arising from them. This approach 
sensitively detects rare and viable intracellular bacteria in defined 
splenocyte subsets17. In confirmation of earlier studies14, CD8α+ 
DCs were an early niche of L. monocytogenes and we cultured only 
a few bacteria from macrophages and CD8α− DCs. However, we 
cultured only a few bacteria from CD8α+ DCs when we incubated 
the inoculum in C3−/− serum rather than wild-type serum (Fig. 2d), 
which indicated that C3 was a key factor promoting early establish-
ment of L. monocytogenes in the spleen.

Complement mediates L. monocytogenes–platelet association
Our aforementioned experiments of timed C3 depletion (Fig. 1e) or 
sorting of infected CD8α+ DCs (Fig. 2d) suggested a role for C3 in 
the early stages of infection. C3 is abundant in the circulation and may 
thus opsonize bacteria immediately upon their entry into the blood-
stream. We therefore analyzed the appearance of L. monocytogenes 
marked with the cytosolic dye CFSE in the peripheral blood of wild-
type or C3−/− mice within 1 min of systemic infection. Notably, essen-
tially all L. monocytogenes recovered from the circulation of wild-type 
mice was associated with cellular components positive for the platelet 
membrane glycoprotein IIb (CD41), whereas this exclusive association 
with platelets was lost in C3−/− mice (Fig. 3a). The limited residual 
L. monocytogenes–platelet coacquisition in C3−/− mice reflected the 
overall CD41+/CD41− ratio of the sample (Fig. 3a), consistent with 

the proposal that these events occurred by chance owing to acquisi-
tion of a free platelet and free bacterium within the same droplet, a 
technical problem in the detection of such small particles. We further  
investigated L. monocytogenes association with platelets using fluores-
cence microscopy and found small clusters of about one to five platelets 
per L. monocytogenes in the blood obtained from infected wild-type 
mice; in contrast, we observed no clustering in the blood from 
infected C3−/− mice (Fig. 3a). Notably, platelet association was res-
cued in C3−/− mice by preopsonizing the L. monocytogenes inoculum  
with wild-type serum, or inhibited in wild-type mice by pretreating 
the mice with CVF (Fig. 3b). Together, these data identify a highly 
specific, rapid and C3-dependent association of L. monocytogenes 
with platelets in the bloodstream.

Complement factor C3 is a central component of the comple-
ment system, and it can become activated via several pathways. 
We examined platelet-bacteria association in mice selectively lack-
ing complement C4, a key factor of the ‘classical’ and ‘mannose-
binding lectin’ pathways of complement activation. The absence of 
C4 (C4b−/−) did not interfere with the ability of L. monocytogenes 
to associate with platelets (Fig. 3c), confirming a dominant role 
for C3 and the ‘alternative’ pathway of complement activation in 
opsonizing the bacteria18. Complement C5 (in the presence of 
immunoglobulins) and the receptor for the globular domain of 
C1q have been implicated in in vitro models of bacteria-platelet 
interaction19–21. We excluded the possibility of a role for C1q, 
immunoglobulins and C5 in vivo using C1qa−/− mice, recombina-
tion-activating gene 1 (Rag1−/−) mice and naturally C5-deficient 
mice, respectively (Fig. 3d), which confirmed that a previously 
unknown type of bacteria-platelet interaction is involved in shut-
tling bacteria from the circulation to CD8α+ DCs.

Next, we set out to identify platelet surface molecules involved in 
the interaction between platelets and L. monocytogenes. In an in vitro 
assay using a panel of monoclonal antibodies specific for a range 
of abundantly expressed platelet markers in whole C4b−/− blood  
(to preclude the possibility of classical pathway–mediated comple-
ment activation on platelets while principally supporting the possi-
bility of L. monocytogenes–platelet association), we identified a GPIb 
α-specific clone (p0p/B)22 that abrogated L. monocytogenes–platelet 
interaction (Fig. 3e). We confirmed involvement of GPIb in a mouse 
line lacking normal surface expression of this molecule (Gp1ba−/−)23 
(Fig. 3f). Notably, lack of GPIb on platelets led to impaired shuttling 
of L. monocytogenes to CD8α+ DCs (Fig. 3g).
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washed by repeated centrifugation and resuspension until the ELISA 
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37 °C. (c) Early splenic L. monocytogenes burdens of C3−/− mice 1 h  
after infection with L. monocytogenes incubated with C3−/− or wild-
type serum. (d) Spleens of C3−/− mice obtained 1 h after infection 
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Platelet adhesion promotes bacteria targeting to CD8a+ DCs 
The above experiments indicated that adhesion of platelets to  
L. monocytogenes is a crucial step in [the infection of CD8α+ DCs. 
We therefore expected that the absence of platelets would lead to less  
in vivo targeting of this cell population and lower spleen burdens 
than in the presence of platelets, which would mirror the results 
obtained with C3−/− mice (Fig. 1). To address this hypothesis, we 
depleted complement-sufficient wild-type mice of platelets in vivo 
and sorted macrophages and DCs from the spleens 1 h after infection 
to assess their bacterial content. Indeed, lack of platelets resulted in 
considerably fewer L. monocytogenes in splenic CD8α+ DCs (Fig. 4a).  

Consistent with that early decrease, total splenic bacterial burdens of 
platelet-depleted mice were also lower 3 d after infection (Fig. 4b).

Not only L. monocytogenes (Fig. 2d) but also platelets were 
specifically taken up by CD8α+ DCs: intracellular detection 
of the platelet-specific marker CD41 steadily increased in the 
CD8α+ DC compartment with incremental intravenous doses of  
L. monocytogenes (Fig. 4c, left). The CD41 signal did not increase 
in the other phagocytic splenocyte fractions analyzed (Fig. 4d, 
left), including CD8α− DCs (Fig. 4c, right), nor did we detect it 
when we omitted cell permeabilization and considered only cell 
surface detection (Fig. 4d, right). Together these data indicate that  
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complement-mediated platelet adherence facilitates the targeting of  
L. monocytogenes to its early splenic CD8α+ DC survival niche.

Less CD8a+ DC targeting and antibacterial immunity
Next we assessed the influence of complement-platelet-mediated 
CD8α+ DC targeting on the induction of L. monocytogenes–directed 
T cell immunity. To limit bacterial spread and thus exclude the pos-
sible involvement of successive cohorts of antigen-presenting cells 
in the induction of T cell responses, we infected mice with a mutant 
L. monocytogenes strain–deficient in spreading. Genetic deletion 
of the ActA protein (∆ActA), which is responsible for the actin-
based motility of L. monocytogenes in mammalian cells, prevents the 
spreading of L. monocytogenes beyond the initially targeted CD8α+ 
DCs. Moreover, the mutant strain also transgenically expresses 
chicken ovalbumin, which allows assessment of defined infection-
specific cytotoxic T cell responses to this surrogate bacterial antigen. 
In C3−/− mice, efficient CD8α+ DC targeting via bacterial adhesion 
to platelets cannot occur, and coincidentally ovalbumin-directed 
(H2-Kb–SIINFEKL multimer–positive) CD8+ T cell responses to  
L. monocytogenes–ovalbumin-∆ActA infection were significantly 
lower than those in wild-type mice (Fig. 5a). However, C3−/− mice 
were principally able to mount robust CD8+ T cell responses to 
infection, as we found with ovalbumin-expressing replication- 
deficient modified vaccinia Ankara (Supplementary Fig. 1), whereas 

platelet depletion in complement C3–sufficient mice led to impaired 
CD8+ T cell responses to L. monocytogenes–ovalbumin-∆ActA  
(Fig. 5b). Also, populations of adoptively transferred ovalbumin-
specific T cell antigen receptor (TCR)-transgenic CD8+ T cells (OT-I 
cells), derived from complement-sufficient mice, expanded poorly in 
an environment in which bacteria-platelet association and efficient 
CD8α+ DC targeting cannot occur (Fig. 5c). These data are consist-
ent with a requirement for blood-borne L. monocytogenes to associate  
with platelets to generate optimal antibacterial responses.

Platelets balance clearance with immunity induction
The reticuloendothelial system of professional phagocytes has 
an important role in the filtration and clearing of the circulation.  
As viable L. monocytogenes accumulate in spleen-residing CD8α+ DCs 
(Fig. 2d), we assessed the relative contribution of DC phagocytosis 
in the overall clearance of systemic L. monocytogenes. Despite 
their central role in both the establishment14 and resolution of  
L. monocytogenes infection8, we found the contribution of DCs in  
L. monocytogenes clearance to be insubstantial, as the clearance 
 kinetics were identical in wild-type mice and the CD11c-DTR mouse 
model of DC depletion (Fig. 6a and Supplementary Fig. 2a). In con-
trast, we found that clearance without C3 was significantly acceler-
ated (Fig. 6b), which was unexpected given the established role of 
complement in early bacterial clearance2. The accelerated clearance 
in C3−/− mice could, however, be fully attributed to reticuloendothe-
lial system phagocytes, as the depletion of macrophages by systemic 
clodronate liposome treatment abrogated clearance entirely (Fig. 6c 
and Supplementary Fig. 2b).
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To determine whether complement-mediated platelet adhesion 
‘shielded’ L. monocytogenes from rapid intravascular clearance, we 
assessed bacterial clearance in platelet-depleted wild-type mice. 
Compared with the clearance of wild-type controls, platelet-depleted 
wild-type mice showed an initial accelerated clearance similar to that in 
infected C3−/− mice (Fig. 6d and Supplementary Fig. 2c), at a rate dou-
ble that of wild-type controls (linear regression best-fit values over the 
first 5 min were −0.21 ± 0.048, −0.44 ± 0.067 and −0.47 ± 0.052 for wild-
type, C3−/− and platelet-depleted wild-type mice, respectively; Fig. 6e). 
As a result, >90% of the inoculum was cleared within the first 3 min in 
both C3−/− and platelet-depleted wild-type mice, whereas wild-type mice 
reached this degree of clearance in 5–10 min (Fig. 6f). Complement-
mediated platelet binding seemed to shield L. monocytogenes from rapid 
destruction in the reticuloendothelial system, promoting DC targeting 
(Figs. 2d, 3g and 4a) and T cell immunity (Fig. 5).

Platelet association is common among Gram-positive bacteria
To test whether C3-promoted platelet association is a unique fea-
ture of L. monocytogenes or a more general mechanism, we assessed 
platelet adhesion to a variety of other Gram-positive bacterial strains, 
including several that can cause severe infection in the absence of 
a functional complement system24,25. Similar to results obtained 
with L. monocytogenes, we observed ‘preferential’ platelet asso-
ciation for Staphylococcus aureus, Enterococcus fecalis and Bacillus 
 subtilis in wild-type mice, whereas coacquisition in C3−/− mice was a 
chance event that reflected the overall CD41+/CD41− ratio (Fig. 7). 
We did not observe specific platelet association with Streptococcus 
 pneumoniae, the only encapsulated strain tested within the panel, 
consistent with the reported ability of its capsule to effectively inhibit 
complement deposition onto its surface26. Indeed, nonencapsulated  
S. pneumoniae, derived from the same parental strain, regained 
exclusive platelet binding (Fig. 7). Together, these data show that 
 bacteria-platelet association is dominated by C3 and is a common 
feature among Gram-positive bacteria.

DISCUSSION
The complement system is involved in innate and acquired immune 
responses to diverse infections in humans and mice24,25,27. In line with 
this well-established role, complement enhances L. monocytogenes 

phagocytosis28, aids L. monocytogenes–specific T cell responses29, and 
mice lacking complement receptor 3 (ref. 30) or the immunoglobulin 
superfamily complement receptor31 are more susceptible to  
L. monocytogenes infection. Even so, our findings show that  
L. monocytogenes also exploits the complement system and requires it 
to establish itself in the host spleen by initially targeting, surviving in 
and spreading from CD8α+ DCs. In a clinical setting, this facultative 
intracellular character enables L. monocytogenes to migrate across 
the placenta or blood-brain barrier, which makes it a serious health 
hazard to pregnant women or immunocompromised people7. In our 
experimental setting, we used the intracellular survival strategy of 
L. monocytogenes as a tool to sensitively detect live bacteria in flow-
sorted splenocyte populations, enabling us to identify a complement- 
and platelet-based ‘delivery mechanism’ to CD8α+ DCs. Moreover, 
we identified a crucial role for platelet receptor GPIb in this shuttling 
pathway. In the case of systemic L. monocytogenes, this targeting route 
represents a double-edged sword to the host: whereas blood-borne 
bacteria are shuttled to a potent immunity-inducing DC population, 
that same population simultaneously provides L. monocytogenes 
with an early survival niche. Identification of this shuttling system 
for blood-borne bacteria therefore also provides mechanistic detail 
for reports that have identified the importance of the spleen16 and its 
DC populations13,14 in facilitating L. monocytogenes infection.

More generally, the findings described here outline a complement- 
and platelet-based mechanism that provides CD8α+ DCs with access 
to bacterially derived antigenic material from the circulation. Indeed, 
when L. monocytogenes targeting to splenic CD8α+ DCs is impaired 
in the absence of complement-mediated platelet adhesion, infec-
tion-directed T cell immunity becomes much lower. Our data thus 
provide a plausible mechanism for the diminished L. monocytogenes–
specific T cell responses that have been described in C3−/− mice29.  
C3-dependent platelet association was not limited to L. monocytogenes 
but was also found in other unrelated Gram-positive bacteria, which 
suggests that this mechanism may be generally important, and pos-
sibly supporting key CD8α+ DC functions such as cross-presentation 
of exogenous antigen or capture of apoptotic cells.

We also conclude that bacterial association with platelets balances 
two vital processes: restoring sterility of the circulation through 
rapid destruction of systemic bacteria by reticuloendothelial system 
phagocytes, and shifting a small portion of bacteria to CD8α+ DCs to 
induce infection-specific immunity. How this balance is achieved on a  
cellular and molecular level remains unclear, but, consistent with our 
findings, pathogen-associated molecular patterns of C3-opsonized 
bacteria could become partially ‘shrouded’ by adhering platelets, delay-
ing pathogen-specific recognition and clearance by reticuloendothelial 
system phagocytes. Simultaneously, the greater size of such clusters, 
relative to the size of a single bacterium, might favor capture within 
the cell-packed marginal sinus, where blood slowly percolates through 
the spleen and a substantial population of CD8α+ DCs resides4,5.  
As for this hypothesis, a published study has described an effective 
collaboration between marginal zone macrophages and CD8α+ DCs 
in the generation of cytotoxic CD8+ T cells6.

Bacteria-platelet interactions have attracted interest for several 
reasons, including the bactericidal properties of platelets, bacterial 
contamination of transfusion platelets, infective endocarditis and 
thrombocytopenia32. For many strains, host or bacterial factors mediat-
ing platelet interaction remain unidentified, but for some, involve-
ment of the complement system has been suggested32. One study has 
described the binding affinity of S. aureus protein A to gC1qR-p33, 
the predominantly intracellular C1q receptor21. Affinity of gC1qR-p33 
has also been described for InternalinB33, an L. monocytogenes surface 
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molecule that facilitates liver colonization. However, the involvement 
of gC1qR-p33 in L. monocytogenes–platelet association has not been 
described, and our data demonstrated that L. monocytogenes–platelet 
binding in vivo was dominated by a C3-mediated mechanism. Our 
data also preclude the possibility of involvement of immunoglobulins 
or C5, whose binding to S. aureus or Streptococcus sanguis promotes 
in vitro platelet aggregation via a mechanism involving the platelet 
Fc receptor and complement fixation20,34. This mechanism, termed 
‘slow activation’ to distinguish it from two complement-independent 
mechanisms of ‘rapid’ in vitro platelet activation32, requires 7–19 min 
for S. sanguis34. In contrast, our in vivo experiments indicated that 
complement-mediated platelet association with L. monocytogenes also 
occurred without immunoglobulins (Rag1−/− mice) or C5 and within 
a time frame as short as 1 min. The dispensability of immunoglobulins 
also precludes the possibility of involvement of classical complement 
activation, as we confirmed in C4b−/− and C1qa−/− mice.

A longstanding question has been what platelet receptor is 
responsible for C3-mediated platelet adhesion. In contrast to human 
platelets, for which true complement receptor expression has been 
described35,36, such a receptor has been elusive on mouse platelets. 
However, mouse platelets express and bind complement regulatory 
proteins that can interact with C3 fragments to protect themselves 
from complement-mediated damage37,38. We found that GPIb, a  
leucine-rich glycoprotein receptor not previously associated with 
complement biology, had a critical role in the association of com-
plement C3–opsonized bacteria with platelets. This is a previously 
unidentified role for this receptor, which is uniquely expressed on 
platelets and platelet-forming megakaryocytes.

In conclusion, we have identified a complement C3– and platelet  
GPIb–based shuttling mechanism for endovascular bacteria to 
CD8α+ DCs in the spleen. This mechanism balances rapid clear-
ance and destruction of blood-borne pathogens through the reticulo-
endothelial system with the induction of adaptive immune responses. 
As DCs have broad relevance to immunity and tolerance, we suggest 
that the complement- and platelet-dependent targeting mechanism we 
identified here may be a factor to consider in vaccination strategies39, 
cross-presentation40, removal of apoptotic cells and tolerance41.

METhODS
Methods and any associated references are available in the online 
 version of the paper at http://www.nature.com/natureimmunology/.

Note: Supplementary information is available on the Nature Immunology website.
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ONLINE METhODS
Mice. C1qa−/− mice42, C3−/− mice25, C3ar1−/− mice43, C4b−/− mice44, C5mut/mut 
GP1ba−/− mice23, Rag1−/− mice45, CD11c-DTR transgenic mice8, OT-1 mice 
(transgenic expression of a TCR –specific for ovalbumin peptide, amino acids 
257–264)46 carrying the congenic CD90.1+ marker and wild-type mice, all on 
C57BL/6 genetic background, except C5mut/mut (A/J), were derived by in-house 
breeding under specific pathogen–free conditions at the University of Zurich 
and Technische Universität München. Experiments were carried out according 
to the respective local veterinary laws and institutional guidelines.

Bacteria and infections. Bacteria were grown to exponential phase at 37 °C in 
BHI broth and washed; inoculums were prepared in PBS. L. monocytogenes wild-
type strain 10403S was administered intravenously at a dose of 0.5 × 104 to 1 × 104  
colony-forming units (CFU) to determine spleen burdens at 1, 3 and 7 d after 
infection, 1 × 108 CFU for early clearance kinetic studies. For experiments involv-
ing splenic cell sorting, mice were infected intravenously with 0.5 × 106 to 1 × 106 
CFU L. monocytogenes (strain 10403S) and spleens were collected after 1 h. For 
analysis of CD8+ T cell responses at day 7, 1 × 104 CFU ∆ActA-L. monocytogenes–
ovalbumin47 or 1 × 108 plaque-forming units of ovalbumin-expressing modified 
vaccinia virus Ankara48 were administered intravenously. Fluorescent traceable 
bacteria were obtained by incubation for 30 min at 37 °C in PBS containing 5 µM 
CSFE (carboxyfluorescein diacetate succinimidyl ester) at a density of 1 × 109 CFU 
per ml. For analysis of in vivo platelet binding, CFSE-labeled L. monocytogenes 
(10403S), S. aureus (Leibniz Institute German Collection of Microorganisms and 
Cell Cultures (DSMZ) 20231), E. fecalis (DMSZ 20478), B. subtilis (DSMZ 10) 
or S. pneumoniae (encapsulated strain D39/serotype 2, and its noncapsular R6 
derivative) was used. In vitro infection of fresh peripheral blood for blocking 
studies was done in the presence of 50 µg lepirudin (Refludan), 10 µg antibody 
(antibody to GPIa-IIa (anti-GPIa-IIa; 23C11), anti- GPIbβ (p0p2), anti-GPIbα 
(p0p/B), anti-P-selectin (5C8), anti-LFA-1 (15G9), anti-PECAM1 (KIR1), anti-
GPV (DOM1), anti-GPIIbIIIa (JON/A) and anti-GPVI (JAQ2)) and 1 × 108 CFU 
CFSE-labeled L. monocytogenes per milliliter blood, added in that order. In some 
experiments, L. monocytogenes were preopsonized with complement by mixture 
of equal volumes of fresh wild-type mouse serum (or C3−/− control serum) and 
washed bacteria (1 × 109 CFU/ml). After 30 min of incubation at 37 °C, bacteria 
were washed repeatedly in PBS. The C3 content of serum, wash supernatants and 
opsonized bacteria was determined by ELISA as described49. Bacterial titers of 
blood aliquots, homogenized organs, sorted cells and inoculums were determined 
by plating on BHI agar.

Complement, platelet, DC and phagocyte depletions. Transient in vivo deple-
tion of C3 was achieved with intraperitoneal injection with 25 µg CVF (Quidel) 
at the appropriate time points and verified by ELISA as described49. Mice were 
depleted of platelets by single intravenous injection of anti-CD42b (4 µg per gram 
body weight) according to the manufacturer’s instruction (Emfret Analytics), and 
their absence was verified by flow cytometry staining with anti-CD41 (MWReg30 
BD Biosciences) in peripheral blood. CD11c-DTR transgenic mice were depleted 
of DCs with diphtheria toxin (4 ng per gram body weight, injected intraperi-
toneally; Sigma). Depletion of phagocytes of the reticuloendothelial system 
was achieved by systemic application of clodronate liposomes, prepared and 
administered as described50. Depletion of DCs and phagocytes was verified by 
histological analysis of liver and spleen as described14.

Analysis of platelets. Blood was immediately diluted 20-fold in flow cytometry 
buffer (PBS, 0.5% (wt/vol) BSA) containing heparin (50 IU/ml) for inhibition 

of ex vivo clotting, platelet aggregation and complement activation. Samples 
were kept at 20 °C and manipulated minimally; platelet-specific anti-CD41 
(MWReg30; BD Biosciences) was titrated and added directly to the sample, 
followed by dilution of the sample 1:10 in flow cytometry buffer. Samples were 
then acquired on a FACSCalibur (BD Biosciences) and analyzed with FlowJo 
software (TreeStar). Alternatively, a sample aliquot was photographed with 
a DMRB fluorescence microscope (Leica) connected to an AxioCam MRc 
camera with Axiovision software (Zeiss).

Analysis of L. monocytogenes–infected splenocytes. Cells were analyzed 
described14; spleens were removed and digested with collagenase for isola-
tion of splenocytes at 1 h after intravenous infection with L. monocytogenes. 
After being washed in gentamicin-containing medium (5 µg/ml) to prevent 
extracellular growth of L. monocytogenes, cells were preincubated with anti-
CD16-CD32 (2.4G2; BD Biosciences) and were subsequently stained with 
anti-CD8a (5H10; Caltag), anti-CD11c (HL3), anti-CD11b (M1/70) and 
anti-Ly6G (1Ab; all from BD Biosciences). Propidium iodide (Molecular 
Probes) was used for the discrimination of live or dead cells before sorting 
or was omitted for intracellular staining (Fixation/Permeabilization buffer, 
eBioscience) with anti-CD41 (MWReg30; BD Biosciences). Cell populations 
were sorted into pure FCS on a MoFlo Legacy flow cytometer (Beckman 
Coulter); their purity (>95%) was verified on a CyAn ADP Lx (Beckman 
Coulter) and they were lysed with Triton-X and plated on BHI plates for 
quantification of bacteria.

Analysis of CD8+ T cell responses. Ovalbumin-specific cytotoxic T cell 
responses to infection with ∆ActA-L. monocytogenes–ovalbumin were ana-
lyzed among endogenous and adoptively transferred OT-I CD8+ T cells 
(CD90.1+). At 1 d before infection, 100 naive (CD44loCD8+) live (propid-
ium iodide–negative) OT-I cells were sorted from peripheral blood of OT-I 
(CD90.1+) mice on a MoFlo Legacy flow cytometer (Beckman Coulter) and 
were transferred intraperitoneally into recipient mice (CD90.2+). Splenocytes 
were analyzed 1 week after infection on a CyAn ADP Lx (Beckman Coulter). 
Ovalbumin-specific cytotoxic T cells were detected by flow cytometry with 
anti-CD3 (17A2; BD Biosciences) and anti-CD8 (5H10; Invitrogen), in combi-
nation with H2-Kb–SIINFEKL multimer for endogenous cells or anti-CD90.1 
(OX-7; BD Biosciences) for transferred OT-I cells.
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