Commentary | Published:

ChIP-Seq: technical considerations for obtaining high-quality data

Nature Immunology volume 12, pages 918922 (2011) | Download Citation

Abstract

Chromatin immunoprecipitation followed by next-generation sequencing analysis (ChIP-Seq) is a powerful method with which to investigate the genome-wide distribution of chromatin-binding proteins and histone modifications in any genome with a known sequence. The application of this technique to a variety of developmental and differentiation systems has provided global views of the cis-regulatory elements, transcription factor function and epigenetic processes involved in the control of gene transcription. Here we describe several technical aspects of the ChIP-Seq assay that diminish bias and background noise and allow the consistent generation of high-quality data.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Cell 129, 823–837 (2007).

  2. 2.

    et al. Immunity 30, 155–167 (2009).

  3. 3.

    & Immunity 34, 830–842 (2011).

  4. 4.

    Immunity 33, 12–24 (2010).

  5. 5.

    et al. Cell 140, 678–691 (2010).

  6. 6.

    et al. BMC Mol. Biol. 10, 6 (2009).

  7. 7.

    , , , & Cell 132, 1049–1061 (2008).

  8. 8.

    , & Nat. Methods 7, 615–618 (2010).

  9. 9.

    et al. PLoS ONE 4, e6700 (2009).

  10. 10.

    et al. Mol. Cell. Biol. 28, 2825–2839 (2008).

  11. 11.

    et al. Nat. Methods 5, 1005–1010 (2008).

  12. 12.

    , , & Bioinformatics 27, 272–274 (2011).

  13. 13.

    , & Nat. Biotechnol. 26, 1351–1359 (2008).

  14. 14.

    & Brief Bioinform. published online, doi:10.1093/bib/bbq077 (18 January 2011).

  15. 15.

    , & Genome Res. 21, 1181–1192 (2011).

  16. 16.

    , & Genome Biol. 11, R116 (2010).

  17. 17.

    & Brief. Bioinform. 11, 473–483 (2010).

  18. 18.

    & Brief Bioinform. published online, doi:10.1093/bib/bbq068 (8 November 2010).

  19. 19.

    , , & Nucleic Acids Res. 39, e103 (2011).

  20. 20.

    et al. Genome Biol. 9, R137 (2008).

  21. 21.

    et al. Bioinformatics 25, 1952–1958 (2009).

  22. 22.

    et al. Bioinformatics 26, 1199–1204 (2010).

  23. 23.

    , , , & Genome Biol. 12, R67 (2011).

  24. 24.

    et al. PLOS Comput. Biol. 7, e1002111 (2011).

  25. 25.

    , & Bioinformatics 27, 1569–1570 (2011).

Download references

Acknowledgements

We thank B. Abraham and D. Northrup for critical reading of the manuscript, and K. Cui for discussions. Supported by the Division of Intramural Research of the National Heart, Lung and Blood Institute.

Author information

Affiliations

  1. Benjamin L. Kidder, Gangqing Hu and Keji Zhao are in the Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.

    • Benjamin L Kidder
    • , Gangqing Hu
    •  & Keji Zhao

Authors

  1. Search for Benjamin L Kidder in:

  2. Search for Gangqing Hu in:

  3. Search for Keji Zhao in:

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Benjamin L Kidder or Keji Zhao.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/ni.2117

Further reading

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing