Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes

Abstract

Fibroblastic reticular cells (FRCs) and lymphatic endothelial cells (LECs) are nonhematopoietic stromal cells of lymphoid organs. They influence the migration and homeostasis of naive T cells; however, their influence on activated T cells remains undescribed. Here we report that FRCs and LECs inhibited T cell proliferation through a tightly regulated mechanism dependent on nitric oxide synthase 2 (NOS2). Expression of NOS2 and production of nitric oxide paralleled the activation of T cells and required a tripartite synergism of interferon-γ, tumor necrosis factor and direct contact with activated T cells. Notably, in vivo expression of NOS2 by FRCs and LECs regulated the size of the activated T cell pool. Our study elucidates an as-yet-unrecognized role for the lymph node stromal niche in controlling T cell responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LNSCs inhibit DC-induced proliferation of CD8+ T cells.
Figure 2: FRCs dampen the proliferation of activated T cells.
Figure 3: IFNGR1 signaling in FRCs is crucial for suppression.
Figure 4: FRCs use NOS2 to regulate T cell proliferation.
Figure 5: TNF and cell contact trigger NOS2 expression in FRCs.
Figure 6: LECs inhibit T cell proliferation via NOS2.
Figure 7: NOS2-mediated suppression operates in vivo.
Figure 8: NOS2 is expressed by FRCs and LECs in vivo.

Similar content being viewed by others

References

  1. Mueller, S.N. & Ahmed, R. Lymphoid stroma in the initiation and control of immune responses. Immunol. Rev. 224, 284–294 (2008).

    Article  CAS  Google Scholar 

  2. Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783–795 (2004).

    Article  CAS  Google Scholar 

  3. Gretz, J.E., Anderson, A.O. & Shaw, S. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol. Rev. 156, 11–24 (1997).

    Article  CAS  Google Scholar 

  4. Bajénoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

    Article  Google Scholar 

  5. Mueller, S.N. & Germain, R.N. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat. Rev. Immunol. 9, 618–629 (2009).

    Article  CAS  Google Scholar 

  6. Link, A. et al. Fibroblastic reticular cells in lymph nodes regulate the homeostasis of naive T cells. Nat. Immunol. 8, 1255–1265 (2007).

    Article  CAS  Google Scholar 

  7. Thomas, S., Kolumam, G.A. & Murali-Krishna, K. Antigen presentation by nonhemopoietic cells amplifies clonal expansion of effector CD8 T cells in a pathogen-specific manner. J. Immunol. 178, 5802–5811 (2007).

    Article  CAS  Google Scholar 

  8. Fletcher, A.L. et al. Lymph node fibroblastic reticular cells directly present peripheral tissue antigen under steady-state and inflammatory conditions. J. Exp. Med. 207, 689–697 (2010).

    Article  CAS  Google Scholar 

  9. Lee, J.W. et al. Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat. Immunol. 8, 181–190 (2007).

    Article  CAS  Google Scholar 

  10. Magnusson, F.C. et al. Direct presentation of antigen by lymph node stromal cells protects against CD8 T-cell-mediated intestinal autoimmunity. Gastroenterology 134, 1028–1037 (2008).

    Article  CAS  Google Scholar 

  11. Nichols, L.A. et al. Deletional self-tolerance to a melanocyte/melanoma antigen derived from tyrosinase is mediated by a radio-resistant cell in peripheral and mesenteric lymph nodes. J. Immunol. 179, 993–1003 (2007).

    Article  CAS  Google Scholar 

  12. Grigorova, I.L. et al. Cortical sinus probing, S1P1-dependent entry and flow-based capture of egressing T cells. Nat. Immunol. 10, 58–65 (2009).

    Article  CAS  Google Scholar 

  13. Pham, T.H. et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J. Exp. Med. 207, 17–27 (2010).

    Article  CAS  Google Scholar 

  14. Cohen, J.N. et al. Lymph node-resident lymphatic endothelial cells mediate peripheral tolerance via Aire-independent direct antigen presentation. J. Exp. Med. 207, 681–688 (2010).

    Article  CAS  Google Scholar 

  15. Angeli, V. et al. B cell-driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24, 203–215 (2006).

    Article  CAS  Google Scholar 

  16. Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2, 907–916 (2001).

    Article  CAS  Google Scholar 

  17. Krumenacker, J.S., Hanafy, K.A. & Murad, F. Regulation of nitric oxide and soluble guanylyl cyclase. Brain Res. Bull. 62, 505–515 (2004).

    Article  CAS  Google Scholar 

  18. Barcellos, L.F. et al. Genetic variation in nitric oxide synthase 2A (NOS2A) and risk for multiple sclerosis. Genes Immun. 9, 493–500 (2008).

    Article  CAS  Google Scholar 

  19. Kato, H. et al. Effect of NOS2 gene deficiency on the development of autoantibody mediated arthritis and subsequent articular cartilage degeneration. J. Rheumatol. 30, 247–255 (2003).

    CAS  PubMed  Google Scholar 

  20. Kolios, G., Valatas, V. & Ward, S.G. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 113, 427–437 (2004).

    Article  CAS  Google Scholar 

  21. Stuart, P.E. et al. Genome-wide association analysis identifies three psoriasis susceptibility loci. Nat. Genet. 42, 1000–1004 (2010).

    Article  CAS  Google Scholar 

  22. Niedbala, W., Cai, B. & Liew, F.Y. Role of nitric oxide in the regulation of T cell functions. Ann. Rheum. Dis. 65 (suppl. 3), iii37–iii40 (2006).

    PubMed  PubMed Central  Google Scholar 

  23. Niedbala, W. et al. Nitric oxide induces CD4+CD25+ Foxp3 regulatory T cells from CD4+CD25 T cells via p53, IL-2, and OX40. Proc. Natl. Acad. Sci. USA 104, 15478–15483 (2007).

    Article  CAS  Google Scholar 

  24. Nathan, C. & Xie, Q.W. Regulation of biosynthesis of nitric oxide. J. Biol. Chem. 269, 13725–13728 (1994).

    CAS  PubMed  Google Scholar 

  25. Duthoit, C.T., Mekala, D.J., Alli, R.S. & Geiger, T.L. Uncoupling of IL-2 signaling from cell cycle progression in naive CD4+ T cells by regulatory CD4+CD25+ T lymphocytes. J. Immunol. 174, 155–163 (2005).

    Article  CAS  Google Scholar 

  26. Hu, X. & Ivashkiv, L.B. Cross-regulation of signaling pathways by interferon-γ: implications for immune responses and autoimmune diseases. Immunity 31, 539–550 (2009).

    Article  CAS  Google Scholar 

  27. Gabrilovich, D.I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    Article  CAS  Google Scholar 

  28. Uccelli, A., Moretta, L. & Pistoia, V. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8, 726–736 (2008).

    Article  CAS  Google Scholar 

  29. Mueller, S.N. et al. Viral targeting of fibroblastic reticular cells contributes to immunosuppression and persistence during chronic infection. Proc. Natl. Acad. Sci. USA 104, 15430–15435 (2007).

    Article  CAS  Google Scholar 

  30. Reynoso, E.D. et al. Intestinal tolerance is converted to autoimmune enteritis upon PD-1 ligand blockade. J. Immunol. 182, 2102–2112 (2009).

    Article  CAS  Google Scholar 

  31. Grohmann, U. & Bronte, V. Control of immune response by amino acid metabolism. Immunol. Rev. 236, 243–264 (2010).

    Article  CAS  Google Scholar 

  32. Vig, M. et al. Inducible nitric oxide synthase in T cells regulates T cell death and immune memory. J. Clin. Invest. 113, 1734–1742 (2004).

    Article  CAS  Google Scholar 

  33. Vezys, V., Olson, S. & Lefrancois, L. Expression of intestine-specific antigen reveals novel pathways of CD8 T cell tolerance induction. Immunity 12, 505–514 (2000).

    Article  CAS  Google Scholar 

  34. Buettner, M., Pabst, R. & Bode, U. Lymph node stromal cells strongly influence immune response suppression. Eur. J. Immunol. 41, 624–633 (2011).

    Article  CAS  Google Scholar 

  35. Jones, S., Horwood, N., Cope, A. & Dazzi, F. The antiproliferative effect of mesenchymal stem cells is a fundamental property shared by all stromal cells. J. Immunol. 179, 2824–2831 (2007).

    Article  CAS  Google Scholar 

  36. Krampera, M. et al. Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells 24, 386–398 (2006).

    Article  CAS  Google Scholar 

  37. Ren, G. et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2, 141–150 (2008).

    Article  CAS  Google Scholar 

  38. Aggarwal, S. & Pittenger, M.F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105, 1815–1822 (2005).

    Article  CAS  Google Scholar 

  39. Podgrabinska, S. et al. Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via Mac-1/ICAM-1-dependent mechanism. J. Immunol. 183, 1767–1779 (2009).

    Article  CAS  Google Scholar 

  40. Francisco, L.M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029 (2009).

    Article  CAS  Google Scholar 

  41. English, K., Barry, F.P., Field-Corbett, C.P. & Mahon, B.P. IFN-γ and TNF-α differentially regulate immunomodulation by murine mesenchymal stem cells. Immunol. Lett. 110, 91–100 (2007).

    Article  CAS  Google Scholar 

  42. Kamijo, R. et al. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science 263, 1612–1615 (1994).

    Article  CAS  Google Scholar 

  43. Saura, M., Zaragoza, C., Bao, C., McMillan, A. & Lowenstein, C.J. Interaction of interferon regulatory factor-1 and nuclear factor κB during activation of inducible nitric oxide synthase transcription. J. Mol. Biol. 289, 459–471 (1999).

    Article  CAS  Google Scholar 

  44. Farlik, M. et al. Nonconventional initiation complex assembly by STAT and NF-κB transcription factors regulates nitric oxide synthase expression. Immunity 33, 25–34 (2010).

    Article  CAS  Google Scholar 

  45. Mazzoni, A. et al. Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J. Immunol. 168, 689–695 (2002).

    Article  CAS  Google Scholar 

  46. Wei, X.Q. et al. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375, 408–411 (1995).

    Article  CAS  Google Scholar 

  47. Huang, S. et al. Immune response in mice that lack the interferon-γ receptor. Science 259, 1742–1745 (1993).

    Article  CAS  Google Scholar 

  48. Badovinac, V.P., Tvinnereim, A.R. & Harty, J.T. Regulation of antigen-specific CD8+ T cell homeostasis by perforin and interferon-γ. Science 290, 1354–1358 (2000).

    Article  CAS  Google Scholar 

  49. Feuerer, M., Eulenburg, K., Loddenkemper, C., Hamann, A. & Huehn, J. Self-limitation of Th1-mediated inflammation by IFN-γ. J. Immunol. 176, 2857–2863 (2006).

    Article  CAS  Google Scholar 

  50. Kahn, D.A., Archer, D.C., Gold, D.P. & Kelly, C.J. Adjuvant immunotherapy is dependent on inducible nitric oxide synthase. J. Exp. Med. 193, 1261–1268 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Curry for technical assistance at the Dana-Farber Cancer Institute Flow Cytometry Core Facility; A. Sharpe (Harvard Medical School) for PD-L1-deficient mice; L. Lefrancois (University of Connecticut) for iFABP-tOVA mice; L.-H. Ang, Y. Zheng and S.J. Hagen for technical assistance at the Imaging Microscopy Core of Beth Israel Deaconess Medical Center; and J. Astarita and A. Bellemare-Pelletier for critically reading the manuscript. Supported by the US National Institutes of Health (R01 DK074500 and P01 AI045757 to S.J.T.) and the Dana-Farber Cancer Institute (V.L.-K).

Author information

Authors and Affiliations

Authors

Contributions

V.L.-K. designed and did most of the experiments, analyzed and interpreted data and wrote the manuscript; D.M. did individual experiments and discussed and interpreted results; A.L.F. edited the manuscript; A.L.F., S.E.A., K.G.E., P.T. and A.C. discussed and interpreted results and provided technical help for the experiments; and S.J.T. directed the study, analyzed and interpreted results and wrote the manuscript.

Corresponding author

Correspondence to Shannon J Turley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Methods (PDF 766 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukacs-Kornek, V., Malhotra, D., Fletcher, A. et al. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol 12, 1096–1104 (2011). https://doi.org/10.1038/ni.2112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing