The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation

This article has been updated


Interleukin 17 (IL-17) is critical in the pathogenesis of inflammatory and autoimmune diseases. Here we report that Act1, the key adaptor for the IL-17 receptor (IL-7R), formed a complex with the inducible kinase IKKi after stimulation with IL-17. Through the use of IKKi-deficient mice, we found that IKKi was required for IL-17-induced expression of genes encoding inflammatory molecules in primary airway epithelial cells, neutrophilia and pulmonary inflammation. IKKi deficiency abolished IL-17-induced formation of the complex of Act1 and the adaptors TRAF2 and TRAF5, activation of mitogen-activated protein kinases (MAPKs) and mRNA stability, whereas the Act1–TRAF6–transcription factor NF-κB axis was retained. IKKi was required for IL-17-induced phosphorylation of Act1 on Ser311, adjacent to a putative TRAF-binding motif. Substitution of the serine at position 311 with alanine impaired the IL-17-mediated Act1-TRAF2-TRAF5 interaction and gene expression. Thus, IKKi is a kinase newly identified as modulating IL-17 signaling through its effect on Act1 phosphorylation and consequent function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: IKKi forms a complex with Act1 after stimulation with IL-17.
Figure 2: IKKi is required for the IL-17-mediated expression of genes encoding proinflammatory molecules.
Figure 3: IKKi is required for IL-17-mediated pulmonary inflammation.
Figure 4: The kinase activity of IKKi is required for stabilization of chemokine mRNA.
Figure 5: The kinase activity of IKKi is required for IL-17-induced phosphorylation of Act1.
Figure 6: Identification of the Ser311-phosphorylation site of Act1 by mass spectrometry.
Figure 7: The effect of phosphorylation of Act1 Ser311 on the interaction of Act1 with TRAF proteins.

Accession codes


Protein Data Bank

Change history

  • 22 August 2011

    In the version of this article initially published, the author Mark R. Chance was incorrectly identified as Mark Chance. The error has been corrected in the HTML and PDF versions of the article.


  1. 1

    Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Cho, J.S. et al. IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J. Clin. Invest. 120, 1762–1773 (2010).

    Article  Google Scholar 

  3. 3

    Conti, H.R. et al. Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J. Exp. Med. 206, 299–311 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Iwakura, Y. & Ishigame, H. The IL-23/IL-17 axis in inflammation. J. Clin. Invest. 116, 1218–1222 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Alcorn, J.F., Crowe, C.R. & Kolls, J.K. TH17 cells in asthma and COPD. Annu. Rev. Physiol. 72, 495–516 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Kolls, J.K. & Khader, S.A. The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev. 21, 443–448 (2010).

    CAS  Article  Google Scholar 

  11. 11

    Kolls, J.K. Th17 cells in mucosal immunity and tissue inflammation. Semin. Immunopathol. 32, 1–2 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Chang, S.H., Park, H. & Dong, C. Act1 adaptor protein is an immediate and essential signaling component of interleukin-17 receptor. J. Biol. Chem. 281, 35603–35607 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Hartupee, J., Liu, C., Novotny, M., Li, X. & Hamilton, T. IL-17 enhances chemokine gene expression through mRNA stabilization. J. Immunol. 179, 4135–4141 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Ho, A.W. & Gaffen, S.L. IL-17RC: a partner in IL-17 signaling and beyond. Semin. Immunopathol. 32, 33–42 (2010).

    CAS  Article  Google Scholar 

  16. 16

    Huang, F. et al. Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1-dependent NF-κB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. J. Immunol. 179, 6504–6513 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Kao, C.Y. et al. Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-kappaB-dependent signaling pathway. J. Immunol. 175, 6676–6685 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Qian, Y. et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat. Immunol. 8, 247–256 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Shen, F. et al. IL-17 receptor signaling inhibits C/EBPβ by sequential phosphorylation of the regulatory 2 domain. Sci. Signal. 2, ra8 (2009).

    Article  Google Scholar 

  20. 20

    Shen, F. & Gaffen, S.L. Structure-function relationships in the IL-17 receptor: implications for signal transduction and therapy. Cytokine 41, 92–104 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Toy, D. et al. Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J. Immunol. 177, 36–39 (2006).

    CAS  Article  Google Scholar 

  22. 22

    Novatchkova, M., Leibbrandt, A., Werzowa, J., Neubuser, A. & Eisenhaber, F. The STIR-domain superfamily in signal transduction, development and immunity. Trends Biochem. Sci. 28, 226–229 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Swaidani, S. et al. The critical role of epithelial-derived Act1 in IL-17- and IL-25-mediated pulmonary inflammation. J. Immunol. 182, 1631–1640 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Li, X. et al. Act1, an NF-κB-activating protein. Proc. Natl. Acad. Sci. USA 97, 10489–10493 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Schwandner, R., Yamaguchi, K. & Cao, Z. Requirement of tumor necrosis factor receptor-associated factor (TRAF)6 in interleukin 17 signal transduction. J. Exp. Med. 191, 1233–1240 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Liu, C. et al. Act1, a U-box E3 ubiquitin ligase for IL-17 signaling. Sci. Signal. 2, ra63 (2009).

    PubMed  PubMed Central  Google Scholar 

  27. 27

    Peters, R.T., Liao, S.M. & Maniatis, T. IKKepsilon is part of a novel PMA-inducible IκB kinase complex. Mol. Cell 5, 513–522 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Shimada, T. et al. IKK-i, a novel lipopolysaccharide-inducible kinase that is related to IkappaB kinases. Int. Immunol. 11, 1357–1362 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Fitzgerald, K.A. et al. IKKɛ and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    CAS  Article  Google Scholar 

  30. 30

    Hemmi, H. et al. The roles of two IκB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199, 1641–1650 (2004).

    CAS  Article  Google Scholar 

  31. 31

    Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6, 981–988 (2005).

    CAS  Article  Google Scholar 

  32. 32

    Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    CAS  Article  Google Scholar 

  33. 33

    Tebo, J.M. et al. Interleukin-1-mediated stabilization of mouse KC mRNA depends on sequences in both 5′- and 3′-untranslated regions. J. Biol. Chem. 275, 12987–12993 (2000).

    CAS  Article  Google Scholar 

  34. 34

    Park, Y.C., Burkitt, V., Villa, A.R., Tong, L. & Wu, H. Structural basis for self-association and receptor recognition of human TRAF2. Nature 398, 533–538 (1999).

    CAS  Article  Google Scholar 

  35. 35

    Ye, H., Park, Y.C., Kreishman, M., Kieff, E. & Wu, H. The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol. Cell 4, 321–330 (1999).

    CAS  Article  Google Scholar 

  36. 36

    Ye, H. et al. Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418, 443–447 (2002).

    CAS  Article  Google Scholar 

  37. 37

    Datta, S. et al. IL-17 regulates CXCL1 mRNA stability via an AUUUA/tristetraprolin-independent sequence. J. Immunol. 184, 1484–1491 (2010).

    CAS  Article  Google Scholar 

  38. 38

    Hartupee, J., Li, X. & Hamilton, T. Interleukin 1alpha-induced NFκB activation and chemokine mRNA stabilization diverge at IRAK1. J. Biol. Chem. 283, 15689–15693 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Sun, D. et al. Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the TRAF5 and the splicing regulatory factor SF2/ASF. Nat. Immunol. advance online publication, doi:10.1038/ni.2081 (7 Aug 2011).

  40. 40

    Fukunaga, R. & Hunter, T. MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 16, 1921–1933 (1997).

    CAS  Article  Google Scholar 

  41. 41

    Hitti, E. et al. Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol. Cell. Biol. 26, 2399–2407 (2006).

    CAS  Article  Google Scholar 

  42. 42

    Rowlett, R.M. et al. MNK kinases regulate multiple TLR pathways and innate proinflammatory cytokines in macrophages. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G452–G459 (2008).

    CAS  Article  Google Scholar 

  43. 43

    Ueda, T., Watanabe-Fukunaga, R., Fukuyama, H., Nagata, S. & Fukunaga, R. Mnk2 and Mnk1 are essential for constitutive and inducible phosphorylation of eukaryotic initiation factor 4E but not for cell growth or development. Mol. Cell. Biol. 24, 6539–6549 (2004).

    CAS  Article  Google Scholar 

  44. 44

    Sønder, S.U. et al. IL-17-induced NF-κB activation via CIKS/Act1: physiologic significance and signaling mechanisms. J. Biol. Chem. 286, 12881–12890 (2011).

    Article  Google Scholar 

  45. 45

    Lauer, M.E. et al. Differentiated murine airway epithelial cells synthesize a leukocyte-adhesive hyaluronan matrix in response to endoplasmic reticulum stress. J. Biol. Chem. 283, 26283–26296 (2008).

    CAS  Article  Google Scholar 

  46. 46

    Schwieters, C.D., Kuszewski, J.J., Tjandra, N. & Clore, G.M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    CAS  Article  Google Scholar 

  47. 47

    Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L. & Schwede, T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 37, D387–D392 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Kopp, J. & Schwede, T. The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res. 32, D230–D234 (2004).

    CAS  Article  Google Scholar 

  49. 49

    Clore, G.M. & Schwieters, C.D. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N–1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics. J. Am. Chem. Soc. 125, 2902–2912 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Clore, G.M. & Kuszewski J. Chi1 rotamer populations and angles of mobile surface side chains are accurately predicted by a torsion angle database potential of mean force. J. Am. Chem. Soc. 124, 2866–2867 (2002)

    CAS  Article  Google Scholar 

Download references


We thank T. Maniatis (Harvard University) for IKKi-deficient and wild-type C57BL/6 control mice; and the High Performance Computing Resource in the Core Facility for Advanced Research Computing and Center of Proteomics and Bioinformatics at Case Western Reserve University. Supported by the American Asthma Foundation (X.L.), the US National Institutes of Health (R01HL098935-01A1 to X.L.) and the American Heart Association (09POST2010041 to R.C.P.).

Author information




K.B., C.L., S.S., L.W., M.F.G., T.H., W.Q. and D.S., experiments; K.B. and C.L., experimental design, performance and interpretation and writing of the manuscript; L.W. and M.R.C., mass spectrometry study; R.C.P. and S.M., structure modeling; A.A., M.L. and V.H., assistance with the primary mouse airway epithelial cell culture; M.A., assistance with in vivo experiments; X.L. and T.H., design and interpretation of experiments and writing of the manuscript; all authors, review of the final manuscript.

Corresponding author

Correspondence to Xiaoxia Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bulek, K., Liu, C., Swaidani, S. et al. The inducible kinase IKKi is required for IL-17-dependent signaling associated with neutrophilia and pulmonary inflammation. Nat Immunol 12, 844–852 (2011).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing