Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential role for the prolyl isomerase Pin1 in Toll-like receptor signaling and type I interferon–mediated immunity

Abstract

Toll-like receptors (TLRs) shape innate and adaptive immunity to microorganisms. The enzyme IRAK1 transduces signals from TLRs, but mechanisms for its activation and regulation remain unknown. We found here that TLR7 and TLR9 activated the isomerase Pin1, which then bound to IRAK1; this resulted in activation of IRAK1 and facilitated its release from the receptor complex to activate the transcription factor IRF7 and induce type I interferons. Consequently, Pin1-deficient cells and mice failed to mount TLR-mediated, interferon-dependent innate and adaptive immune responses. Given the critical role of aberrant activation of IRAK1 and type I interferons in various immune diseases, controlling IRAK1 activation via inhibition of Pin1 may represent a useful therapeutic approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pin1 is activated and required for cytokine and especially type I interferon secretion after TLR stimulation.
Figure 2: Identification of IRAK1 as a major Pin1 substrate after TLR stimulation, by a proteomics approach.
Figure 3: Phosphorylated Ser131-Pro132, S144-Pro145 and S173-Pro174 sites in the IRAK1 undetermined domain bind to and are isomerized by Pin1.
Figure 4: Pin1 is essential for IRAK1 activation after TLR ligation.
Figure 5: Pin1 facilitates IRAK1 release from the receptor complex to activate IRF7 after TLR ligation.
Figure 6: Pin1 is required for IRF7 activation and IFN-α production after TLR ligation in vitro.
Figure 7: Pin1 is required for TLR-mediated, type I interferon-dependent innate and adaptive immunity in vivo.

Similar content being viewed by others

References

  1. O'Neill, L.A. The interleukin-1 receptor/Toll-like receptor superfamily: 10 years of progress. Immunol. Rev. 226, 10–18 (2008).

    Article  CAS  Google Scholar 

  2. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  Google Scholar 

  3. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    Article  CAS  Google Scholar 

  4. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  5. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196–200 (2002).

    Article  CAS  Google Scholar 

  6. Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  Google Scholar 

  7. Heil, F. et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303, 1526–1529 (2004).

    Article  CAS  Google Scholar 

  8. Liu, Y.J. IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu. Rev. Immunol. 23, 275–306 (2005).

    Article  CAS  Google Scholar 

  9. Hoebe, K., Janssen, E. & Beutler, B. The interface between innate and adaptive immunity. Nat. Immunol. 5, 971–974 (2004).

    Article  CAS  Google Scholar 

  10. Baccala, R., Hoebe, K., Kono, D.H., Beutler, B. & Theofilopoulos, A.N. TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat. Med. 13, 543–551 (2007).

    Article  CAS  Google Scholar 

  11. Banchereau, J. & Pascual, V. Type I interferon in systemic lupus erythematosus and other autoimmune diseases. Immunity 25, 383–392 (2006).

    Article  CAS  Google Scholar 

  12. Cao, Z., Henzel, W.J. & Gao, X. IRAK: a kinase associated with the interleukin-1 receptor. Science 271, 1128–1131 (1996).

    Article  CAS  Google Scholar 

  13. Wesche, H., Henzel, W.J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837–847 (1997).

    Article  CAS  Google Scholar 

  14. Uematsu, S. et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction. J. Exp. Med. 201, 915–923 (2005).

    Article  CAS  Google Scholar 

  15. Kawai, T. et al. Interferon-alpha induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5, 1061–1068 (2004).

    Article  CAS  Google Scholar 

  16. Honda, K. et al. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc. Natl. Acad. Sci. USA 101, 15416–15421 (2004).

    Article  CAS  Google Scholar 

  17. Kollewe, C. et al. Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J. Biol. Chem. 279, 5227–5236 (2004).

    Article  CAS  Google Scholar 

  18. Honda, K. et al. Spatiotemporal regulation of MyD88-IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005).

    Article  CAS  Google Scholar 

  19. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    Article  CAS  Google Scholar 

  20. Thomas, J.A. et al. Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J. Immunol. 163, 978–984 (1999).

    CAS  PubMed  Google Scholar 

  21. Lu, K.P. & Zhou, X.Z. The prolyl isomerase Pin1: a pivotal new twist in phosphorylation signalling and human disease. Nat. Rev. Mol. Cell Biol. 8, 904–916 (2007).

    Article  CAS  Google Scholar 

  22. Yaffe, M.B. et al. Sequence-specific and phosphorylation-dependent proline isomerization: A potential mitotic regulatory mechanism. Science 278, 1957–1960 (1997).

    Article  CAS  Google Scholar 

  23. Saitoh, T. et al. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat. Immunol. 7, 598–605 (2006).

    Article  CAS  Google Scholar 

  24. Honda, K. & Taniguchi, T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol. 6, 644–658 (2006).

    Article  CAS  Google Scholar 

  25. Wildemann, D. et al. Nanomolar inhibitors of the peptidyl prolyl cis/trans isomerase Pin1 from combinatorial peptide libraries. J. Med. Chem. 49, 2147–2150 (2006).

    Article  CAS  Google Scholar 

  26. Jewell, N.A. et al. Differential type I interferon induction by respiratory syncytial virus and influenza a virus in vivo. J. Virol. 81, 9790–9800 (2007).

    Article  CAS  Google Scholar 

  27. Shen, Z.J., Esnault, S. & Malter, J.S. The peptidyl-prolyl isomerase Pin1 regulates the stability of granulocyte-macrophage colony-stimulating factor mRNA in activated eosinophils. Nat. Immunol. 6, 1280–1287 (2005).

    Article  CAS  Google Scholar 

  28. Lu, P.J., Zhou, X.Z., Shen, M. & Lu, K.P. A function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 283, 1325–1328 (1999).

    Article  CAS  Google Scholar 

  29. Hoshino, K. et al. Critical role of IκB kinase α in TLR7/9-induced type I IFN production by conventional dendritic cells. J. Immunol. 184, 3341–3345 (2010).

    Article  CAS  Google Scholar 

  30. Li, X. et al. Mutant cells that do not respond to interleukin-1 (IL-1) reveal a novel role for IL-1 receptor-associated kinase. Mol. Cell. Biol. 19, 4643–4652 (1999).

    Article  CAS  Google Scholar 

  31. Ranganathan, R., Lu, K.P., Hunter, T. & Noel, J.P. Structural and functional analysis of the mitotic peptidyl-prolyl isomerase Pin1 suggests that substrate recognition is phosphorylation dependent. Cell 89, 875–886 (1997).

    Article  CAS  Google Scholar 

  32. Pastorino, L. et al. The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440, 528–534 (2006).

    Article  CAS  Google Scholar 

  33. Chiang, E.Y., Yu, X. & Grogan, J.L. Immune complex-mediated cell activation from systemic lupus erythematosus and rheumatoid arthritis patients elaborate different requirements for IRAK1/4 kinase activity across human cell types. J. Immunol. 186, 1279–1288 (2011).

    Article  CAS  Google Scholar 

  34. Krug, A. et al. TLR9-dependent recognition of MCMV by IPC and DC generates coordinated cytokine responses that activate antiviral NK cell function. Immunity 21, 107–119 (2004).

    Article  CAS  Google Scholar 

  35. Dalod, M. et al. Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J. Exp. Med. 195, 517–528 (2002).

    Article  CAS  Google Scholar 

  36. Delale, T. et al. MyD88-dependent and -independent murine cytomegalovirus sensing for IFN-α release and initiation of immune responses in vivo. J. Immunol. 175, 6723–6732 (2005).

    Article  CAS  Google Scholar 

  37. Steinberg, C. et al. The IFN regulatory factor 7-dependent type I IFN response is not essential for early resistance against murine cytomegalovirus infection. Eur. J. Immunol. 39, 1007–1018 (2009).

    Article  CAS  Google Scholar 

  38. Ahonen, C.L. et al. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J. Exp. Med. 199, 775–784 (2004).

    Article  CAS  Google Scholar 

  39. Nguyen, K.B. et al. Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science 297, 2063–2066 (2002).

    Article  CAS  Google Scholar 

  40. Honda, K. et al. Selective contribution of IFN-α/β signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc. Natl. Acad. Sci. USA 100, 10872–10877 (2003).

    Article  CAS  Google Scholar 

  41. Jacob, C.O. et al. Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc. Natl. Acad. Sci. USA 106, 6256–6261 (2009).

    Article  CAS  Google Scholar 

  42. Theofilopoulos, A.N., Baccala, R., Beutler, B. & Kono, D.H. Type I interferons (α/β) in immunity and autoimmunity. Annu. Rev. Immunol. 23, 307–336 (2005).

    Article  CAS  Google Scholar 

  43. Meier, A. et al. Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat. Med. 15, 955–959 (2009).

    Article  CAS  Google Scholar 

  44. Trinchieri, G. Type I interferon: friend or foe? J. Exp. Med. 207, 2053–2063 (2010).

    Article  CAS  Google Scholar 

  45. Rahman, A.H. & Eisenberg, R.A. The role of toll-like receptors in systemic lupus erythematosus. Springer Semin. Immunopathol. 28, 131–143 (2006).

    Article  CAS  Google Scholar 

  46. Rahman, A. & Isenberg, D.A. Systemic lupus erythematosus. N. Engl. J. Med. 358, 929–939 (2008).

    Article  CAS  Google Scholar 

  47. Gateva, V. et al. A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat. Genet. 41, 1228–1233 (2009).

    Article  CAS  Google Scholar 

  48. Lee, T.H. et al. Essential role of Pin1 in the regulation of TRF1 stability and telomere maintenance. Nat. Cell Biol. 11, 97–105 (2009).

    Article  CAS  Google Scholar 

  49. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    Article  CAS  Google Scholar 

  50. Henry, S.C. et al. Enhanced green fluorescent protein as a marker for localizing murine cytomegalovirus in acute and latent infection. J. Virol. Methods 89, 61–73 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Cantley, T. Hunter, H. Wu and S. Lin for advice and critical reading of the manuscript; L. Brossay (Brown University) and J.D. Hamilton (Duke University Medical Center) for MCMV-GFP; R. Welsh (University of Massachusetts) for H1N1 virus; and S. Whelan (Harvard Medical School) for VSV-GFP. Supported by the Swiss Foundation for Grants in Biology and Medicine (A.T.K.), the US National Institutes of Health (AG029385 to L.K.N. and K.P.L.; DK066917 to M.A.E.; and GM058556), the American Asthma Foundation (K.P.L.) and the Alliance for Lupus Research (K.P.L.).

Author information

Authors and Affiliations

Authors

Contributions

A.T.K. and G.F. designed and did the experiments and wrote the manuscript; A.G. did nuclear magnetic resonance experiments; M.N. and T.H.L. provided technical assistance; J.M.A. did mass spectrometry analysis; K.F., X.L., G.C.T., M.E. and E.I. provided reagents and technical expertise; and L.K.N. and K.P.L. designed the experiments, supervised the project and wrote the manuscript.

Corresponding author

Correspondence to Kun Ping Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Note (PDF 2323 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tun-Kyi, A., Finn, G., Greenwood, A. et al. Essential role for the prolyl isomerase Pin1 in Toll-like receptor signaling and type I interferon–mediated immunity. Nat Immunol 12, 733–741 (2011). https://doi.org/10.1038/ni.2069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2069

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing