Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors

Abstract

The orphan nuclear receptor SHP (small heterodimer partner) is a transcriptional corepressor that regulates hepatic metabolic pathways. Here we identified a role for SHP as an intrinsic negative regulator of Toll-like receptor (TLR)-triggered inflammatory responses. SHP-deficient mice were more susceptible to endotoxin-induced sepsis. SHP had dual regulatory functions in a canonical transcription factor NF-κB signaling pathway, acting as both a repressor of transactivation of the NF-κB subunit p65 and an inhibitor of polyubiquitination of the adaptor TRAF6. SHP-mediated inhibition of signaling via the TLR was mimicked by macrophage-stimulating protein (MSP), a strong inducer of SHP expression, via an AMP-activated protein kinase–dependent signaling pathway. Our data identify a previously unrecognized role for SHP in the regulation of TLR signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SHP protects against LPS-induced lethal shock through the inhibition of inflammatory responses in vivo.
Figure 2: SHP inhibits LPS-induced inflammatory responses in macrophages and splenocytes.
Figure 3: SHP is a regulator of signaling by Nod2 and RLRs but not of dectin-1 signaling.
Figure 4: SHP regulates TLR4-mediated NF-κB signaling through an interaction between SHP and p65.
Figure 5: SHP interacts with TRAF6 to negatively modulate its ubiquitination.
Figure 6: TLR4 activation induces SHP expression in macrophages via Ca2+-dependent activation of AMPK.
Figure 7: MSP-induced SHP regulates TLR4-mediated proinflammatory signaling through the activation of an LKB1-dependent AMPK pathway.

Similar content being viewed by others

Accession codes

Accessions

Mouse Genome Informatics

References

  1. Cohen, J. The immunopathogenesis of sepsis. Nature 420, 885–891 (2002).

    Article  CAS  Google Scholar 

  2. Nathan, C. Points of control in inflammation. Nature 420, 846–852 (2002).

    Article  CAS  Google Scholar 

  3. Akira, S., Takeda, K. & Kaisho, T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2, 675–680 (2001).

    Article  CAS  Google Scholar 

  4. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.-A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  5. Wang, J., Hu, Y., Deng, W.W. & Sun, B. Negative regulation of Toll-like receptor signaling pathway. Microbes Infect. 11, 321–327 (2009).

    Article  Google Scholar 

  6. Seol, W., Choi, H.S. & Moore, D.D. An orphan nuclear hormone receptor that lacks a DNA binding domain and heterodimerizes with other receptors. Science 272, 1336–1339 (1996).

    Article  CAS  Google Scholar 

  7. Lee, Y.S., Chanda, D., Sim, J., Park, Y.Y. & Choi, H.S. Structure and function of the atypical orphan nuclear receptor small heterodimer partner. Int. Rev. Cytol. 261, 117–158 (2007).

    Article  CAS  Google Scholar 

  8. Båvner, A., Sanyal, S., Gustafsson, J.A. & Treuter, E. Transcriptional corepression by SHP: molecular mechanisms and physiological consequences. Trends Endocrinol. Metab. 16, 478–488 (2005).

    Article  Google Scholar 

  9. Chanda, D., Park, J.H. & Choi, H.S. Molecular basis of endocrine regulation by orphan nuclear receptor Small Heterodimer Partner. Endocr. J. 55, 253–268 (2008).

    Article  CAS  Google Scholar 

  10. Zhang, Y. et al. Orphan receptor small heterodimer partner suppresses tumorigenesis by modulating cyclin D1 expression and cellular proliferation. Hepatology 48, 289–298 (2008).

    Article  Google Scholar 

  11. Chen, Z.J. Ubiquitin signalling in the NF-κB pathway. Nat. Cell Biol. 7, 758–765 (2005).

    Article  CAS  Google Scholar 

  12. Imperatore, F. et al. Hyperbaric oxygen therapy prevents vascular derangement during zymosan-induced multiple-organ-failure syndrome. Intensive Care Med. 30, 1175–1181 (2004).

    Article  Google Scholar 

  13. Yoshitomi, H. et al. A role for fungal β-glucans and their receptor Dectin-1 in the induction of autoimmune arthritis in genetically susceptible mice. J. Exp. Med. 201, 949–960 (2005).

    Article  CAS  Google Scholar 

  14. Chiu, Y.H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    Article  CAS  Google Scholar 

  15. Gitlin, L. et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103, 8459–8464 (2006).

    Article  CAS  Google Scholar 

  16. Dong, C., Davis, R.J. & Flavell, R.A. MAP kinases in the immune response. Annu. Rev. Immunol. 20, 55–72 (2002).

    Article  CAS  Google Scholar 

  17. Häcker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    Article  Google Scholar 

  18. Hoffmann, A. & Baltimore, D. Circuitry of nuclear factor κB signaling. Immunol. Rev. 210, 171–186 (2006).

    Article  Google Scholar 

  19. Kawai, T. & Akira, S. Signaling to NF-κB by Toll-like receptors. Trends Mol. Med. 13, 460–469 (2007).

    Article  CAS  Google Scholar 

  20. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  Google Scholar 

  21. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  Google Scholar 

  22. Sun, S.C. Deubiquitylation and regulation of the immune response. Nat. Rev. Immunol. 8, 501–511 (2008).

    Article  CAS  Google Scholar 

  23. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  Google Scholar 

  24. Fogarty, S. et al. Calmodulin-dependent protein kinase kinase-β activates AMPK without forming a stable complex: synergistic effects of Ca2+ and AMP. Biochem. J. 426, 109–118 (2010).

    Article  CAS  Google Scholar 

  25. Hardie, D.G. New roles for the LKB1→AMPK pathway. Curr. Opin. Cell Biol. 17, 167–173 (2005).

    Article  CAS  Google Scholar 

  26. Chanda, D. et al. Hepatocyte growth factor family negatively regulates hepatic gluconeogenesis via induction of orphan nuclear receptor small heterodimer partner in primary hepatocytes. J. Biol. Chem. 284, 28510–28521 (2009).

    Article  CAS  Google Scholar 

  27. Kim, Y.D. et al. Metformin inhibits hepatic gluconeogenesis through AMP-activated protein kinase-dependent regulation of the orphan nuclear receptor SHP. Diabetes 57, 306–314 (2008).

    Article  CAS  Google Scholar 

  28. Liu, Q.P., Fruit, K., Ward, J. & Correll, P.H. Negative regulation of macrophage activation in response to IFN-γ and lipopolysaccharide by the STK/RON receptor tyrosine kinase. J. Immunol. 163, 6606–6613 (1999).

    CAS  PubMed  Google Scholar 

  29. Goodwin, B. et al. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517–526 (2000).

    Article  CAS  Google Scholar 

  30. Lam, I.P., Lee, L.T., Choi, H.S., Alpini, G. & Chow, B.K. Bile acids inhibit duodenal secretin expression via orphan nuclear receptor small heterodimer partner (SHP). Am. J. Physiol. Gastrointest. Liver Physiol. 297, G90–G97 (2009).

    Article  CAS  Google Scholar 

  31. Rothlin, C.V., Ghosh, S., Zuniga, E.I., Oldstone, M.B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

    Article  CAS  Google Scholar 

  32. Zhang, Y. et al. Nuclear receptor SHP, a death receptor that targets mitochondria, induces apoptosis and inhibits tumor growth. Mol. Cell. Biol. 30, 1341–1356 (2010).

    Article  CAS  Google Scholar 

  33. Wang, Y. et al. Association of β-arrestin and TRAF6 negatively regulates Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol. 7, 139–147 (2006).

    Article  CAS  Google Scholar 

  34. Miao, J. et al. Bile acid signaling pathways increase stability of Small Heterodimer Partner (SHP) by inhibiting ubiquitin-proteasomal degradation. Genes Dev. 23, 986–996 (2009).

    Article  CAS  Google Scholar 

  35. Viollet, B. et al. Targeting AMP-activated protein kinase as a novel therapeutic approach for the treatment of metabolic disorders. Diabetes Metab. 33, 395–402 (2007).

    Article  CAS  Google Scholar 

  36. Sag, D., Carling, D., Stout, R.D. & Suttles, J. Adenosine 5′-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. J. Immunol. 181, 8633–8641 (2008).

    Article  CAS  Google Scholar 

  37. Zhao, X. et al. Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L497–L504 (2008).

    Article  CAS  Google Scholar 

  38. Jhun, B.S. et al. 5-Aminoimidazole-4-carboxamide riboside suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of phosphatidylinositol 3-kinase/Akt activation in RAW 264.7 murine macrophages. Biochem. Biophys. Res. Commun. 318, 372–380 (2004).

    Article  CAS  Google Scholar 

  39. Han, S., Stuart, L.A. & Degen, S.-J. Characterization of the DNF15S2 locus on human chromosome 3: identification of a gene coding for four kringle domains with homology to hepatocyte growth factor. Biochemistry 30, 9768–9780 (1991).

    Article  CAS  Google Scholar 

  40. Bezerra, J.A., Witte, D.P., Aronow, B.J. & Degen, S.J. Hepatocyte-specific expression of the mouse hepatocyte growth factor-like protein. Hepatology 18, 394–399 (1993).

    CAS  PubMed  Google Scholar 

  41. Wang, M.H., Skeel, A. & Leonard, E.J. Proteolytic cleavage and activation of pro-macrophage-stimulating protein by resident peritoneal macrophage membrane proteases. J. Clin. Invest. 97, 720–727 (1996).

    Article  CAS  Google Scholar 

  42. Chen, Y.Q., Fisher, J.H. & Wang, M.H. Activation of the RON receptor tyrosine kinase inhibits inducible nitric oxide synthase (iNOS) expression by murine peritoneal exudate macrophages: phosphatidylinositol-3 kinase is required for RON-mediated inhibition of iNOS expression. J. Immunol. 161, 4950–4959 (1998).

    CAS  PubMed  Google Scholar 

  43. Ray, M. et al. Inhibition of TLR4-Induced IκB kinase activity by the RON receptor tyrosine kinase and its ligand, macrophage-stimulating protein. J. Immunol. 185, 7309–7316 (2010).

    Article  CAS  Google Scholar 

  44. Reichardt, H.M. et al. Repression of inflammatory responses in the absence of DNA binding by the glucocorticoid receptor. EMBO J. 20, 7168–7173 (2001).

    Article  CAS  Google Scholar 

  45. De Bosscher, K., Vanden Berghe, W. & Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: molecular mechanisms for gene repression. Endocr. Rev. 24, 488–522 (2003).

    Article  CAS  Google Scholar 

  46. Ogawa, S. et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707–721 (2005).

    Article  CAS  Google Scholar 

  47. Wang, L. et al. Redundant pathways for negative feedback regulation of bile acid production. Dev. Cell 2, 721–731 (2002).

    Article  CAS  Google Scholar 

  48. Yang, C.S. et al. Roles of peroxiredoxin II in the regulation of proinflammatory responses to LPS and protection against endotoxin-induced lethal shock. J. Exp. Med. 204, 583–594 (2007).

    Article  CAS  Google Scholar 

  49. Schingnitz, U. et al. Signaling through the A2B adenosine receptor dampens endotoxin-induced acute lung injury. J. Immunol. 184, 5271–5279 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S.-Y. Choi for critical reading of manuscript; D.-H. Choi for technical assistance; E. Junn (University of New Jersey) for reagents; and J.-S. Kim and J.-W. Jang for support with total-body irradiation of mice for bone marrow transplantation. Supported by the National Research Foundation of Korea (Korean Ministry of Education, Science and Technology through the Infection Signaling Network Research Center (2011-0006228) at Chungnam National University), the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A100588) and the Korean Ministry of Education, Science and Technology (National Creative Research Initiatives Grant 20110018305).

Author information

Authors and Affiliations

Authors

Contributions

J.-M.Y., D.-M.S., H.-M.L., S.-W.K, H.S.J., C.-S.Y., D.C., D.-K.K., S.M.H. and S.K.L. planned and did experiments and analyzed data; J.-J.K. and C.-H.S. planned and did most of the bone marrow–chimera experiments; K.A.P. and G.M.H. planned and did ubiquitination experiments; C.-H.L., J.-M.K., S.Y.L. and D.D.M. contributed to some of the experiments; H.-S.C. and E.-K.J. supervised the project, designed experiments and wrote the manuscript with comments from the coauthors; and all authors collaborated on the work.

Corresponding authors

Correspondence to Hueng-Sik Choi or Eun-Kyeong Jo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–20, Supplementary Table 1 and Supplementary Methods (PDF 16406 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yuk, JM., Shin, DM., Lee, HM. et al. The orphan nuclear receptor SHP acts as a negative regulator in inflammatory signaling triggered by Toll-like receptors. Nat Immunol 12, 742–751 (2011). https://doi.org/10.1038/ni.2064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing