Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inositol hexakisphosphate kinase 1 regulates neutrophil function in innate immunity by inhibiting phosphatidylinositol-(3,4,5)-trisphosphate signaling

Abstract

Inositol phosphates are widely produced throughout animal and plant tissues. Diphosphoinositol pentakisphosphate (InsP7) contains an energetic pyrophosphate bond. Here we demonstrate that disruption of inositol hexakisphosphate kinase 1 (InsP6K1), one of the three mammalian inositol hexakisphosphate kinases (InsP6Ks) that convert inositol hexakisphosphate (InsP6) to InsP7, conferred enhanced phosphatidylinositol-(3,4,5)-trisphosphate (PtdIns(3,4,5)P3)-mediated membrane translocation of the pleckstrin homology domain of the kinase Akt and thus augmented downstream PtdIns(3,4,5)P3 signaling in mouse neutrophils. Consequently, these neutrophils had greater phagocytic and bactericidal ability and amplified NADPH oxidase–mediated production of superoxide. These phenotypes were replicated in human primary neutrophils with pharmacologically inhibited InsP6Ks. In contrast, an increase in intracellular InsP7 blocked chemoattractant-elicited translocation of the pleckstrin homology domain to the membrane and substantially suppressed PtdIns(3,4,5)P3-mediated cellular events in neutrophils. Our findings establish a role for InsP7 in signal transduction and provide a mechanism for modulating PtdIns(3,4,5)P3 signaling in neutrophils.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disruption of InsP6K1 in mouse neutrophils augments PtdIns(3,4,5)P3 signaling.
Figure 2: Disruption of InsP6K1 leads to enhanced chemoattractant-elicited intracellular and extracellular superoxide production in mouse neutrophils.
Figure 3: Pharmacological inhibition of InsP6K activity augments PtdIns(3,4,5)P3 signaling and NADPH oxidase–mediated production of superoxide in human primary neutrophils.
Figure 4: InsP6K1 disruption does not alter the amount of PtdIns(3,4,5)P3 in neutrophils.
Figure 5: Overexpression of InsP6Ks suppresses PtdIns(3,4,5)P3 signaling in dHL60 cells.
Figure 6: Inhibition of superoxide production by InsP7 in a cell-free reconstitution assay.
Figure 7: Chemoattractant stimulation rapidly diminishes InsP7 in neutrophils.
Figure 8: Enhanced in vivo bacteria-killing ability of Ip6k1−/− mice.
Figure 9: Augmented in vitro bacteria-killing ability of Ip6k1−/− neutrophils, with enhanced phagocytosis and ROS production.

Similar content being viewed by others

References

  1. Shears, S.B. Diphosphoinositol polyphosphates: metabolic messengers? Mol. Pharmacol. 76, 236–252 (2009).

    Article  CAS  Google Scholar 

  2. Stephens, L. et al. The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J. Biol. Chem. 268, 4009–4015 (1993).

    CAS  PubMed  Google Scholar 

  3. Shears, S.B. How versatile are inositol phosphate kinases? Biochem. J. 377, 265–280 (2004).

    Article  CAS  Google Scholar 

  4. Burton, A., Hu, X. & Saiardi, A. Are inositol pyrophosphates signalling molecules? J. Cell. Physiol. 220, 8–15 (2009).

    Article  CAS  Google Scholar 

  5. Menniti, F.S., Miller, R.N., Putney, J.W. Jr. & Shears, S.B. Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J. Biol. Chem. 268, 3850–3856 (1993).

    CAS  PubMed  Google Scholar 

  6. Glennon, M.C. & Shears, S.B. Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes. Biochem. J. 293, 583–590 (1993).

    Article  CAS  Google Scholar 

  7. Safrany, S.T. & Shears, S.B. Turnover of bis-diphosphoinositol tetrakisphosphate in a smooth muscle cell line is regulated by β2-adrenergic receptors through a cAMP-mediated, A-kinase-independent mechanism. EMBO J. 17, 1710–1716 (1998).

    Article  CAS  Google Scholar 

  8. Illies, C. et al. Requirement of inositol pyrophosphates for full exocytotic capacity in pancreatic beta cells. Science 318, 1299–1302 (2007).

    Article  CAS  Google Scholar 

  9. Luo, H.R. et al. GRAB: a physiologic guanine nucleotide exchange factor for Rab3A, which interacts with inositol hexakisphosphate kinase. Neuron 31, 439–451 (2001).

    Article  CAS  Google Scholar 

  10. Morrison, B.H., Bauer, J.A., Kalvakolanu, D.V. & Lindner, D.J. Inositol hexakisphosphate kinase 2 mediates growth suppressive and apoptotic effects of interferon-β in ovarian carcinoma cells. J. Biol. Chem. 276, 24965–24970 (2001).

    Article  CAS  Google Scholar 

  11. Morrison, B.H. et al. Inositol hexakisphosphate kinase 2 sensitizes ovarian carcinoma cells to multiple cancer therapeutics. Oncogene 21, 1882–1889 (2002).

    Article  CAS  Google Scholar 

  12. Nagata, E. et al. Inositol hexakisphosphate kinase-2, a physiologic mediator of cell death. J. Biol. Chem. 280, 1634–1640 (2005).

    Article  CAS  Google Scholar 

  13. Chakraborty, A. et al. HSP90 regulates cell survival via inositol hexakisphosphate kinase-2. Proc. Natl. Acad. Sci. USA 105, 1134–1139 (2008).

    Article  CAS  Google Scholar 

  14. Bhandari, R., Juluri, K.R., Resnick, A.C. & Snyder, S.H. Gene deletion of inositol hexakisphosphate kinase 1 reveals inositol pyrophosphate regulation of insulin secretion, growth, and spermiogenesis. Proc. Natl. Acad. Sci. USA 105, 2349–2353 (2008).

    Article  CAS  Google Scholar 

  15. Chakraborty, A. et al. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143, 897–910 (2010).

    Article  CAS  Google Scholar 

  16. Luo, H.R. et al. Inositol pyrophosphates mediate chemotaxis in Dictyostelium via pleckstrin homology domain-PtdIns(3,4,5)P3 interactions. Cell 114, 559–572 (2003).

    Article  CAS  Google Scholar 

  17. Iijima, M., Huang, Y.E. & Devreotes, P. Temporal and spatial regulation of chemotaxis. Dev. Cell 3, 469–478 (2002).

    Article  CAS  Google Scholar 

  18. Stephens, L., Ellson, C. & Hawkins, P. Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr. Opin. Cell Biol. 14, 203–213 (2002).

    Article  CAS  Google Scholar 

  19. Ridley, A.J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  20. Lemmon, M.A. Phosphoinositide recognition domains. Traffic 4, 201–213 (2003).

    Article  CAS  Google Scholar 

  21. Subramanian, K.K. et al. Tumor suppressor PTEN is a physiologic suppressor of chemoattractant-mediated neutrophil functions. Blood 109, 4028–4037 (2007).

    Article  CAS  Google Scholar 

  22. Jia, Y. et al. Inositol 1,3,4,5-tetrakisphosphate negatively regulates PtdIns(3,4,5)P3 signaling in neutrophils. Immunity 27, 453–467 (2007).

    Article  CAS  Google Scholar 

  23. Parent, C.A., Blacklock, B.J., Froehlich, W.M., Murphy, D.B. & Devreotes, P.N. G protein signaling events are activated at the leading edge of chemotactic cells. Cell 95, 81–91 (1998).

    Article  CAS  Google Scholar 

  24. Thomas, C.C., Deak, M., Alessi, D.R. & van Aalten, D.M. High-resolution structure of the pleckstrin homology domain of protein kinase b/akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr. Biol. 12, 1256–1262 (2002).

    Article  CAS  Google Scholar 

  25. Dinauer, M.C. Chronic granulomatous disease and other disorders of phagocyte function. Hematology (Am. Soc. Hematol. Educ. Program) 89–95 (2005).

    Article  Google Scholar 

  26. Matute, J.D., Arias, A.A., Dinauer, M.C. & Patino, P.J. p40phox: the last NADPH oxidase subunit. Blood Cells Mol. Dis. 35, 291–302 (2005).

    Article  CAS  Google Scholar 

  27. Dahlgren, C., Johansson, A. & Orselius, K. Difference in hydrogen peroxide release between human neutrophils and neutrophil cytoplasts following calcium ionophore activation. A role of the subcellular granule in activation of the NADPH-oxidase in human neutrophils? Biochim. Biophys. Acta 1010, 41–48 (1989).

    Article  CAS  Google Scholar 

  28. Dinauer, M.C. & Orkin, S.H. Chronic granulomatous disease. Annu. Rev. Med. 43, 117–124 (1992).

    Article  CAS  Google Scholar 

  29. Parekh, D.B., Ziegler, W. & Parker, P.J. Multiple pathways control protein kinase C phosphorylation. EMBO J. 19, 496–503 (2000).

    Article  CAS  Google Scholar 

  30. Baumer, A.T. et al. Phosphatidylinositol 3-kinase-dependent membrane recruitment of Rac-1 and p47phox is critical for α-platelet-derived growth factor receptor-induced production of reactive oxygen species. J. Biol. Chem. 283, 7864–7876 (2008).

    Article  Google Scholar 

  31. Chen, Q. et al. Akt phosphorylates p47phox and mediates respiratory burst activity in human neutrophils. J. Immunol. 170, 5302–5308 (2003).

    Article  CAS  Google Scholar 

  32. Padmanabhan, U., Dollins, D.E., Fridy, P.C., York, J.D. & Downes, C.P. Characterization of a selective inhibitor of inositol hexakisphosphate kinases: use in defining biological roles and metabolic relationships of inositol pyrophosphates. J. Biol. Chem. 284, 10571–10582 (2009).

    Article  CAS  Google Scholar 

  33. Brown, G.E., Stewart, M.Q., Liu, H., Ha, V.L. & Yaffe, M.B. A novel assay system implicates PtdIns(3,4)P2, PtdIns(3)P, and PKCδ in intracellular production of reactive oxygen species by the NADPH oxidase. Mol. Cell 11, 35–47 (2003).

    Article  CAS  Google Scholar 

  34. Li, Y. et al. Targeted deletion of tumor suppressor PTEN augments neutrophil function and enhances host defense in neutropenia-associated pneumonia. Blood 113, 4930–4941 (2009).

    Article  CAS  Google Scholar 

  35. Clark, R.A. & Klebanoff, S.J. Chemotactic factor inactivation by the myeloperoxidase-hydrogen peroxide-halide system. J. Clin. Invest. 64, 913–920 (1979).

    Article  CAS  Google Scholar 

  36. Segal, B.H., Kuhns, D.B., Ding, L., Gallin, J.I. & Holland, S.M. Thioglycollate peritonitis in mice lacking C5, 5-lipoxygenase, or p47phox: complement, leukotrienes, and reactive oxidants in acute inflammation. J. Leukoc. Biol. 71, 410–416 (2002).

    CAS  PubMed  Google Scholar 

  37. Lekstrom-Himes, J.A., Kuhns, D.B., Alvord, W.G. & Gallin, J.I. Inhibition of human neutrophil IL-8 production by hydrogen peroxide and dysregulation in chronic granulomatous disease. J. Immunol. 174, 411–417 (2005).

    Article  CAS  Google Scholar 

  38. Heit, B. et al. PTEN functions to 'prioritize' chemotactic cues and prevent 'distraction' in migrating neutrophils. Nat. Immunol. 9, 743–752 (2008).

    Article  CAS  Google Scholar 

  39. Liu, L., Puri, K.D., Penninger, J.M. & Kubes, P. Leukocyte PI3Kγ and PI3Kδ have temporally distinct roles for leukocyte recruitment in vivo. Blood 110, 1191–1198 (2007).

    Article  CAS  Google Scholar 

  40. Ferguson, G.J. et al. PI(3)Kγ has an important context-dependent role in neutrophil chemokinesis. Nat. Cell Biol. 9, 86–91 (2007).

    Article  CAS  Google Scholar 

  41. Lee, Y.S., Mulugu, S., York, J.D. & O'Shea, E.K. Regulation of a cyclin-CDK-CDK inhibitor complex by inositol pyrophosphates. Science 316, 109–112 (2007).

    Article  CAS  Google Scholar 

  42. Voglmaier, S.M. et al. Inositol hexakisphosphate receptor identified as the clathrin assembly protein AP-2. Biochem. Biophys. Res. Commun. 187, 158–163 (1992).

    Article  CAS  Google Scholar 

  43. Norris, F.A., Ungewickell, E. & Majerus, P.W. Inositol hexakisphosphate binds to clathrin assembly protein 3 (AP-3/AP180) and inhibits clathrin cage assembly in vitro. J. Biol. Chem. 270, 214–217 (1995).

    Article  CAS  Google Scholar 

  44. Ye, W., Ali, N., Bembenek, M.E., Shears, S.B. & Lafer, E.M. Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3. J. Biol. Chem. 270, 1564–1568 (1995).

    Article  CAS  Google Scholar 

  45. Saiardi, A., Bhandari, R., Resnick, A.C., Snowman, A.M. & Snyder, S.H. Phosphorylation of proteins by inositol pyrophosphates. Science 306, 2101–2105 (2004).

    Article  CAS  Google Scholar 

  46. Bhandari, R. et al. Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc. Natl. Acad. Sci. USA 104, 15305–15310 (2007).

    Article  CAS  Google Scholar 

  47. Tan, B.L. et al. Genetic evidence for convergence of c-Kit- and alpha4 integrin-mediated signals on class IA PI-3kinase and the Rac pathway in regulating integrin-directed migration in mast cells. Blood 101, 4725–4732 (2003).

    Article  CAS  Google Scholar 

  48. Li, Z. et al. Regulation of PTEN by Rho small GTPases. Nat. Cell Biol. 7, 399–404 (2005).

    Article  CAS  Google Scholar 

  49. Zhu, D. et al. Deactivation of phosphatidylinositol 3,4,5-trisphosphate/Akt signaling mediates neutrophil spontaneous death. Proc. Natl. Acad. Sci. USA 103, 14836–14841 (2006).

    Article  CAS  Google Scholar 

  50. Jia, Y. et al. Inositol 1,3,4,5-tetrakisphosphate negatively regulates phosphatidylinositol-3,4,5-trisphosphate signaling in neutrophils. Immunity 27, 453–467 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Silberstein, J. Manis and L. Chai for discussions. Supported by the US National Institutes of Health (HL085100, AI076471, HL092020 and GM076084 to H.R.L.).

Author information

Authors and Affiliations

Authors

Contributions

A.P., Y.J., A.C., S.H.S. and H.R.L. designed the experiments; A.P., Y.J., A.C., Y.L., S.K.J., J.Z., S.G.R., F.L., S.M., J.S. and C.B. did the experiments; A.P., Y.J., A.C., S.H.S. and H.R.L. analyzed data; and A.P., Y.J., S.H.S. and H.R.L. wrote the manuscript.

Corresponding author

Correspondence to Hongbo R Luo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Methods (PDF 1117 kb)

Supplementary Movie 1

Chemoattractant-elicited polarization of WT neutrophils (MOV 2006 kb)

Supplementary Movie 2

Chemoattractant-elicited polarization of InsP6K−/− neutrophils (MOV 1696 kb)

Supplementary Movie 3

Adhesion of WT (left) and InsP6K−/− (right) neutrophils under shear flow (MOV 799 kb)

Supplementary Movie 4

Detachment of adhered WT (left) and InsP6K−/− (right) neutrophils under shear flow (MOV 1119 kb)

Supplementary Movie 5

Chemotaxis of WT neutrophils (bottom) towards 1 AM of fMLP (top) in EZ-TAXIScan chamber (MOV 882 kb)

Supplementary Movie 6

Chemotaxis of InsP6K1−/− neutrophils (bottom) towards 1 AM of fMLP (top) in EZ-TAXIScan chamber (MOV 862 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, A., Jia, Y., Chakraborty, A. et al. Inositol hexakisphosphate kinase 1 regulates neutrophil function in innate immunity by inhibiting phosphatidylinositol-(3,4,5)-trisphosphate signaling. Nat Immunol 12, 752–760 (2011). https://doi.org/10.1038/ni.2052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing