Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events

Abstract

Engaged T cell antigen receptors (TCRs) initiate signaling through the adaptor protein Lat. In quiescent T cells, Lat is segregated into clusters on the cell surface, which raises the question of how TCR triggering initiates signaling. Using super-resolution fluorescence microscopy, we found that pre-existing Lat domains were neither phosphorylated nor laterally transported to TCR activation sites, which suggested that these clusters do not participate in TCR signaling. Instead, TCR activation resulted in the recruitment and phosphorylation of Lat from subsynaptic vesicles. Studies of Lat mutants confirmed that recruitment preceded and was essential for phosphorylation and that both processes were independent of surface clustering of Lat. Our data suggest that TCR ligation preconditions the membrane for vesicle recruitment and bulk activation of the Lat signaling network.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mapping of single Lat molecules in resting and activated T cells.
Figure 2: Quantitative statistical analysis of Lat clustering in resting and activated T cells.
Figure 3: Clustering of endogenous Lat and phosphorylated Lat in activated wild-type Jurkat cells and primary mouse T cells.
Figure 4: Localized activation of T cells on micro-patterned surfaces.
Figure 5: Live-cell PALM imaging of Lat in activated T cells.
Figure 6: Crosslinking of Lat at the cell surface.
Figure 7: Cluster analysis of Lat mutants in resting and activated T cells.

References

  1. 1

    van der Merwe, P.A. & Davis, S.J. Immunology. The immunological synapse—a multitasking system. Science 295, 1479–1480 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M.L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Gaus, K., Chklovskaia, E., Fazekas de St Groth, B., Jessup, W. & Harder, T. Condensation of the plasma membrane at the site of T lymphocyte activation. J. Cell Biol. 171, 121–131 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Owen, D.M. et al. High plasma membrane lipid order imaged at the immunological synapse periphery in live T cells. Mol. Membr. Biol. 27, 178–189 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6

    Campi, G., Varma, R. & Dustin, M.L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Kaizuka, Y., Douglass, A.D., Varma, R., Dustin, M.L. & Vale, R.D. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc. Natl. Acad. Sci. USA 104, 20296–20301 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    CAS  Article  Google Scholar 

  10. 10

    Samelson, L.E. & Klausner, R.D. Tyrosine kinases and tyrosine-based activation motifs. Current research on activation via the T cell antigen receptor. J. Biol. Chem. 267, 24913–24916 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Weiss, A. & Littman, D.R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Blanchard, N., Di Bartolo, V. & Hivroz, C. In the immune synapse, ZAP-70 controls T cell polarization and recruitment of signaling proteins but not formation of the synaptic pattern. Immunity 17, 389–399 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Finco, T.S., Kadlecek, T., Zhang, W., Samelson, L.E. & Weiss, A. LAT is required for TCR-mediated activation of PLCγ1 and the Ras pathway. Immunity 9, 617–626 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Zhang, W., Irvin, B.J., Trible, R.P., Abraham, R.T. & Samelson, L.E. Functional analysis of LAT in TCR-mediated signaling pathways using a LAT-deficient Jurkat cell line. Int. Immunol. 11, 943–950 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Zhang, W. et al. Essential role of LAT in T cell development. Immunity 10, 323–332 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Aguado, E., Martinez-Florensa, M. & Aparicio, P. Activation of T lymphocytes and the role of the adapter LAT. Transpl. Immunol. 17, 23–26 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Shen, S. et al. The importance of LAT in the activation, homeostasis, and regulatory function of T cells. J. Biol. Chem. 285, 35393–35405 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Ilani, T., Vasiliver-Shamis, G., Vardhana, S., Bretscher, A. & Dustin, M.L. T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nat. Immunol. 10, 531–539 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Lee, K.H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Lee, K.H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Lillemeier, B.F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Hess, S.T., Girirajan, T.P. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. 24

    Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Edn Engl. 47, 6172–6176 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Mattheyses, A.L. & Axelrod, D. Direct measurement of the evanescent field profile produced by objective-based total internal reflection fluorescence. J. Biomed. Opt. 11, 014006 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  27. 27

    Douglass, A.D. & Vale, R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28

    Scita, G. & Di Fiore, P.P. The endocytic matrix. Nature 463, 464–473 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Howarth, M., Takao, K., Hayashi, Y. & Ting, A.Y. Targeting quantum dots to surface proteins in living cells with biotin ligase. Proc. Natl. Acad. Sci. USA 102, 7583–7588 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Hartgroves, L.C. et al. Synergistic assembly of linker for activation of T cells signaling protein complexes in T cell plasma membrane domains. J. Biol. Chem. 278, 20389–20394 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31

    Tanimura, N., Saitoh, S., Kawano, S., Kosugi, A. & Miyake, K. Palmitoylation of LAT contributes to its subcellular localization and stability. Biochem. Biophys. Res. Commun. 341, 1177–1183 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Hundt, M. et al. Palmitoylation-dependent plasma membrane transport but lipid raft-independent signaling by linker for activation of T cells. J. Immunol. 183, 1685–1694 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33

    Zhang, W., Trible, R.P. & Samelson, L.E. LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation. Immunity 9, 239–246 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Lin, J., Weiss, A. & Finco, T.S. Localization of LAT in glycolipid-enriched microdomains is required for T cell activation. J. Biol. Chem. 274, 28861–28864 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Montoya, M.C. et al. Role of ICAM-3 in the initial interaction of T lymphocytes and APCs. Nat. Immunol. 3, 159–168 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Bunnell, S.C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37

    Purbhoo, M. et al. Dynamics of subsynaptic vesicles and surface microclusters at the immunological synapse. Sci. Signal. 3, ra36–ra36 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Bonello, G. et al. Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment. J. Cell Sci. 117, 1009–1016 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39

    Malissen, B., Aguado, E. & Malissen, M. Role of the LAT adaptor in T-cell development and Th2 differentiation. Adv. Immunol. 87, 1–25 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Tanimura, N. et al. Dynamic changes in the mobility of LAT in aggregated lipid rafts upon T cell activation. J. Cell Biol. 160, 125–135 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Zech, T. et al. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling. EMBO J. 28, 466–476 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Harder, T. & Kuhn, M. Selective accumulation of raft-associated membrane protein LAT in T cell receptor signaling assemblies. J. Cell Biol. 151, 199–208 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43

    Rentero, C. et al. Functional implications of plasma membrane condensation for T cell activation. PLoS ONE 3, e2262 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44

    Wilson, B.S., Pfeiffer, J.R., Surviladze, Z., Gaudet, E.A. & Oliver, J.M. High resolution mapping of mast cell membranes reveals primary and secondary domains of FcɛRI and LAT. J. Cell Biol. 154, 645–658 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Liu, H., Purbhoo, M.A., Davis, D.M. & Rudd, C.E. SH2 domain containing leukocyte phosphoprotein of 76-kDa (SLP-76) feedback regulation of ZAP-70 microclustering. Proc. Natl. Acad. Sci. USA 107, 10166–10171 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46

    Barr, V.A. et al. T-cell antigen receptor-induced signaling complexes: internalization via a cholesterol-dependent endocytic pathway. Traffic 7, 1143–1162 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Mingueneau, M. et al. Loss of the LAT adaptor converts antigen-responsive T cells into pathogenic effectors that function independently of the T cell receptor. Immunity 31, 197–208 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Liu, H., Rhodes, M., Wiest, D.L. & Vignali, D.A. On the dynamics of TCR:CD3 complex cell surface expression and downmodulation. Immunity 13, 665–675 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49

    Chen, I., Howarth, M., Lin, W. & Ting, A.Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50

    Owen, D.M. et al. PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 3, 446–454 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the National Health and Medical Research Council of Australia (D.J.W., J.J.G. and K.G.), the Australian Research Council (D.M.O., J.J.G. and K.G.) and Human Frontier Science Program (K.G.).

Author information

Affiliations

Authors

Contributions

D.J.W., molecular biology, PALM, crosslinking experiments and analysis, and manuscript preparation; D.M.O., conceptualization and PALM-STORM analysis; J.R., STORM experiments and analysis; A.M., PALM experiments and analysis of surface-patterning experiments; M.W., surface-patterning experiments; J.J.G., conceptualization of surface patterning; and K.G., conceptualization and manuscript preparation.

Corresponding author

Correspondence to Katharina Gaus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Methods (PDF 1612 kb)

Supplementary Video 1

Lat cluster map movie. (AVI 7297 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Williamson, D., Owen, D., Rossy, J. et al. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 12, 655–662 (2011). https://doi.org/10.1038/ni.2049

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing