Immunological mechanisms of vaccination

Article metrics

Abstract

Vaccines represent one of the greatest triumphs of modern medicine. Despite the common origins of vaccinology and immunology more than 200 years ago, the two disciplines have evolved along such different trajectories that most of the highly successful vaccines have been made empirically, with little or no immunological insight. Recent advances in innate immunity have offered new insights about the mechanisms of vaccine-induced immunity and have facilitated a more rational approach to vaccine design. Here we will discuss these advances and emerging themes on the immunology of vaccination.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Varieties of antibody responses and their correlates of protection.
Figure 2: Programming antibody responses with innate immunity.

References

  1. 1

    Zhu, J., Yamane, H. & Paul, W.E. Differentiation of effector CD4 T cell populations (*). Annu. Rev. Immunol. 28, 445–489 (2010).

  2. 2

    Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

  3. 3

    Sallusto, F., Lanzavecchia, A., Araki, K. & Ahmed, R. From vaccines to memory and back. Immunity 33, 451–463 (2010).

  4. 4

    Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

  5. 5

    Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

  6. 6

    Geijtenbeek, T.B. & Gringhuis, S.I. Signalling through C-type lectin receptors: shaping immune responses. Nat. Rev. Immunol. 9, 465–479 (2009).

  7. 7

    Ting, J.P., Duncan, J.A. & Lei, Y. How the noninflammasome NLRs function in the innate immune system. Science 327, 286–290 (2010).

  8. 8

    Wilkins, C. & Gale, M. Jr. Recognition of viruses by cytoplasmic sensors. Curr. Opin. Immunol. 22, 41–47 (2010).

  9. 9

    Pulendran, B. & Ahmed, R. Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849–863 (2006).

  10. 10

    Steinman, R.M. Dendritic cells in vivo: a key target for a new vaccine science. Immunity 29, 319–324 (2008).

  11. 11

    Ueno, H. et al. Harnessing human dendritic cell subsets for medicine. Immunol. Rev. 234, 199–212 (2010).

  12. 12

    Pulendran, B., Tang, H. & Manicassamy, S. Programming dendritic cells to induce TH2 and tolerogenic responses. Nat. Immunol. 11, 647–655 (2010).

  13. 13

    Kasturi, S.P. et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 470, 543–547 (2011).

  14. 14

    Rodriguez Gomez, M. et al. Basophils support the survival of plasma cells in mice. J. Immunol. 185, 7180–7185 (2010).

  15. 15

    Ganguly, S., Manicassamy, S., Blackwell, J., Pulendran, B. & Amara, R.R. Adenovirus type 5 induces vitamin A-metabolizing enzymes in dendritic cells and enhances priming of gut-homing CD8 T cells. Mucosal Immunol. advance online publication, doi:10.1038/mi.2011.1 (2 February 2011).

  16. 16

    Uematsu, S. et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 9, 769–776 (2008).

  17. 17

    Denning, T.L., Wang, Y.C., Patel, S.R., Williams, I.R. & Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8, 1086–1094 (2007).

  18. 18

    Chen, K. & Cerutti, A. Vaccination strategies to promote mucosal antibody responses. Immunity 33, 479–491 (2010).

  19. 19

    Querec, T.D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10, 116–125 (2009).

  20. 20

    Gaucher, D. et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J. Exp. Med. 205, 3119–3131 (2008).

  21. 21

    Pulendran, B., Li, S. & Nakaya, H.I. Systems vaccinology. Immunity 33, 516–529 (2010).

  22. 22

    Plotkin, S.A., Orenstein, W.A. & Offit, P.A. Vaccines 5th edn (Saunders/Elsevier, Philadelphia, 2008).

  23. 23

    Mbow, M.L., De Gregorio, E., Valiante, N.M. & Rappuoli, R. New adjuvants for human vaccines. Curr. Opin. Immunol. 22, 411–416 (2010).

  24. 24

    Coffman, R.L., Sher, A. & Seder, R.A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).

  25. 25

    Crotty, S. et al. Cutting edge: long-term B cell memory in humans after smallpox vaccination. J. Immunol. 171, 4969–4973 (2003).

  26. 26

    Hammarlund, E. et al. Duration of antiviral immunity after smallpox vaccination. Nat. Med. 9, 1131–1137 (2003).

  27. 27

    Pulendran, B. Learning immunology from the yellow fever vaccine: innate immunity to systems vaccinology. Nat. Rev. Immunol. 9, 741–747 (2009).

  28. 28

    Ahmed, R. & Akondy, R.S. Insights into human CD8+ T-cell memory using the yellow fever and smallpox vaccines. Immunol. Cell Biol. 89, 340–345 (2011).

  29. 29

    Tsuji, S. et al. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect. Immun. 68, 6883–6890 (2000).

  30. 30

    Querec, T. et al. Yellow fever vaccine YF-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyvalent immunity. J. Exp. Med. 203, 413–424 (2006).

  31. 31

    Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. & Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6, 769–776 (2005).

  32. 32

    Koyama, S. et al. Differential role of TLR- and RLR-signaling in the immune responses to influenza A virus infection and vaccination. J. Immunol. 179, 4711–4720 (2007).

  33. 33

    Koyama, S. et al. Plasmacytoid dendritic cells delineate immunogenicity of influenza vaccine subtypes. Sci. Transl. Med. 2, 25ra24 (2010).

  34. 34

    Geeraedts, F. et al. Superior immunogenicity of inactivated whole virus H5N1 influenza vaccine is primarily controlled by Toll-like receptor signalling. PLoS Pathog. 4, e1000138 (2008).

  35. 35

    Rhee, E.G. et al. Multiple innate immune pathways contribute to the immunogenicity of recombinant adenovirus vaccine vectors. J. Virol. 85, 315–323 (2011).

  36. 36

    Lindsay, R.W. et al. CD8+ T cell responses following replication-defective adenovirus serotype 5 immunization are dependent on CD11c+ dendritic cells but show redundancy in their requirement of TLR and nucleotide-binding oligomerization domain-like receptor signaling. J. Immunol. 185, 1513–1521 (2010).

  37. 37

    Gavin, A.L. et al. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314, 1936–1938 (2006).

  38. 38

    Jordan, M.B., Mills, D.M., Kappler, J., Marrack, P. & Cambier, J.C. Promotion of B cell immune responses via an alum-induced myeloid cell population. Science 304, 1808–1810 (2004).

  39. 39

    Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

  40. 40

    Kool, M. et al. Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J. Immunol. 181, 3755–3759 (2008).

  41. 41

    Li, H., Willingham, S.B., Ting, J.P. & Re, F. Cutting edge: inflammasome activation by alum and alum's adjuvant effect are mediated by NLRP3. J. Immunol. 181, 17–21 (2008).

  42. 42

    Mosca, F. et al. Molecular and cellular signatures of human vaccine adjuvants. Proc. Natl. Acad. Sci. USA 105, 10501–10506 (2008).

  43. 43

    Duthie, M.S., Windish, H.P., Fox, C.B. & Reed, S.G. Use of defined TLR ligands as adjuvants within human vaccines. Immunol. Rev. 239, 178–196 (2011).

  44. 44

    Mata-Haro, V. et al. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 316, 1628–1632 (2007).

  45. 45

    Harper, D.M. Currently approved prophylactic HPV vaccines. Expert Rev. Vaccines 8, 1663–1679 (2009).

  46. 46

    Einstein, M.H. et al. Comparison of the immunogenicity and safety of Cervarix and Gardasil human papillomavirus (HPV) cervical cancer vaccines in healthy women aged 18–45 years. Hum. Vaccin. 5, 705–719 (2009).

  47. 47

    Giannini, S.L. et al. Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine 24, 5937–5949 (2006).

  48. 48

    Plotkin, S.A. Vaccines: correlates of vaccine-induced immunity. Clin. Infect. Dis. 47, 401–409 (2008).

  49. 49

    Jack, A.D., Hall, A.J., Maine, N., Mendy, M. & Whittle, H.C. What level of hepatitis B antibody is protective? J. Infect. Dis. 179, 489–492 (1999).

  50. 50

    Lang, J. et al. Comparison of the immunogenicity and safety of two 17D yellow fever vaccines. Am. J. Trop. Med. Hyg. 60, 1045–1050 (1999).

  51. 51

    Wheelock, E.F. & Sibley, W.A. Circulating virus, interferon and antibody after vaccination with the 17-D strain of yellow-fever virus. N. Engl. J. Med. 273, 194–198 (1965).

  52. 52

    Ipsen, J. Circulating antitoxin at the onset of diphtheria in 425 patients. J. Immunol. 54, 325–347 (1946).

  53. 53

    Looney, J.M., Edsall, G., Ipsen, J., Jr. & Chasen, W.H. Persistence of antitoxin levels after tetanus-toxoid inoculation in adults, and effect of a booster dose after various intervals. N. Engl. J. Med. 254, 6–12 (1956).

  54. 54

    Dowdle, W.R., Coleman, M.T., Mostow, S.R., Kaye, H.S. & Schoenbaum, S.C. Inactivated influenza vaccines. 2. Laboratory indices of protection. Postgrad. Med. J. 49, 159–163 (1973).

  55. 55

    Mostow, S.R., Schoenbaum, S.C., Dowdle, W.R., Coleman, M.T. & Kaye, H.S. Inactivated vaccines. 1. Volunteer studies with very high doses of influenza vaccine purified by zonal ultracentrifugation. Postgrad. Med. J. 49, 152–158 (1973).

  56. 56

    Jiang, B., Gentsch, J.R. & Glass, R.I. Inactivated rotavirus vaccines: a priority for accelerated vaccine development. Vaccine 26, 6754–6758 (2008).

  57. 57

    Nagarajan, T. et al. Human monoclonal antibody and vaccine approaches to prevent human rabies. Curr. Top. Microbiol. Immunol. 317, 67–101 (2008).

  58. 58

    Romero-Steiner, S. et al. Use of opsonophagocytosis for serological evaluation of pneumococcal vaccines. Clin. Vaccine Immunol. 13, 165–169 (2006).

  59. 59

    Andreoni, J., Kayhty, H. & Densen, P. Vaccination and the role of capsular polysaccharide antibody in prevention of recurrent meningococcal disease in late complement component-deficient individuals. J. Infect. Dis. 168, 227–231 (1993).

  60. 60

    Arvin, A.M. Humoral and cellular immunity to varicella-zoster virus: an overview. J. Infect. Dis. 197 Suppl 2, S58–S60 (2008).

  61. 61

    Levin, M.J. et al. Varicella-zoster virus-specific immune responses in elderly recipients of a herpes zoster vaccine. J. Infect. Dis. 197, 825–835 (2008).

  62. 62

    McElhaney, J.E. et al. T cell responses are better correlates of vaccine protection in the elderly. J. Immunol. 176, 6333–6339 (2006).

  63. 63

    Sester, M. et al. Levels of virus-specific CD4 T cells correlate with cytomegalovirus control and predict virus-induced disease after renal transplantation. Transplantation 71, 1287–1294 (2001).

  64. 64

    Bunde, T. et al. Protection from cytomegalovirus after transplantation is correlated with immediate early 1-specific CD8 T cells. J. Exp. Med. 201, 1031–1036 (2005).

  65. 65

    Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

  66. 66

    Pantaleo, G. & Koup, R.A. Correlates of immune protection in HIV-1 infection: what we know, what we don't know, what we should know. Nat. Med. 10, 806–810 (2004).

  67. 67

    Hoft, D.F. Tuberculosis vaccine development: goals, immunological design, and evaluation. Lancet 372, 164–175 (2008).

  68. 68

    Reyes-Sandoval, A., Pearson, F.E., Todryk, S. & Ewer, K. Potency assays for novel T-cell-inducing vaccines against malaria. Curr. Opin. Mol. Ther. 11, 72–80 (2009).

  69. 69

    Blattman, J.N. et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. Med. 195, 657–664 (2002).

  70. 70

    Badovinac, V.P., Haring, S.J., & Harty, J.T. Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8+ T cell response to infection. Immunity 26, 827–841 (2007).

  71. 71

    Obar, J.J., Khanna, K.M. & Lefrancois, L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity 28, 859–869 (2008).

  72. 72

    Bajenoff, M. et al. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989–1001 (2006).

  73. 73

    Lindquist, R.L. et al. Visualizing dendritic cell networks in vivo. Nat. Immunol. 5, 1243–1250 (2004).

  74. 74

    Castellino, F. et al. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440, 890–895 (2006).

  75. 75

    Stoll, S., Delon, J., Brotz, T.M. & Germain, R.N. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 1873–1876 (2002).

  76. 76

    Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

  77. 77

    Mempel, T.R., Henrickson, S.E. & Von Andrian, U.H. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154–159 (2004).

  78. 78

    Bousso, P. & Robey, E. Dynamics of CD8+ T cell priming by dendritic cells in intact lymph nodes. Nat. Immunol. 4, 579–585 (2003).

  79. 79

    Celli, S., Lemaitre, F. & Bousso, P. Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation. Immunity 27, 625–634 (2007).

  80. 80

    Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Acad. Sci. USA 96, 1036–1041 (1999).

  81. 81

    Maldonado-Lopez, R. et al. CD8α+ and CD8α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

  82. 82

    den Haan, J.M., Lehar, S.M. & Bevan, M.J. CD8+ but not CD8 dendritic cells cross-prime cytotoxic T cells in vivo. J. Exp. Med. 192, 1685–1696 (2000).

  83. 83

    Dudziak, D. et al. Differential antigen processing by dendritic cell subsets in vivo. Science 315, 107–111 (2007).

  84. 84

    Tang, H. et al. The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROS-mediated signaling. Nat. Immunol. 11, 608–617 (2010).

  85. 85

    Siegal, F.P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

  86. 86

    Kolumam, G.A., Thomas, S., Thompson, L.J., Sprent, J. & Murali-Krishna, K. Type I interferons act directly on CD8 T cells to allow clonal expansion and memory formation in response to viral infection. J. Exp. Med. 202, 637–650 (2005).

  87. 87

    Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

  88. 88

    Moskophidis, D., Lechner, F., Pircher, H. & Zinkernagel, R.M. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362, 758–761 (1993).

  89. 89

    Menges, M. et al. Repetitive injections of dendritic cells matured with tumor necrosis factor α induce antigen-specific protection of mice from autoimmunity. J. Exp. Med. 195, 15–21 (2002).

  90. 90

    Nagai, T. et al. Timing of IFN-β exposure during human dendritic cell maturation and naive Th cell stimulation has contrasting effects on Th1 subset generation: a role for IFN-β-mediated regulation of IL-12 family cytokines and IL-18 in naive Th cell differentiation. J. Immunol. 171, 5233–5243 (2003).

  91. 91

    Poulin, L.F. et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8α+ dendritic cells. J. Exp. Med. 207, 1261–1271 (2010).

  92. 92

    Jongbloed, S.L. et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J. Exp. Med. 207, 1247–1260 (2010).

  93. 93

    Bachem, A. et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J. Exp. Med. 207, 1273–1281 (2010).

  94. 94

    Rissoan, M.C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

  95. 95

    Klechevsky, E. et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29, 497–510 (2008).

  96. 96

    LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007).

  97. 97

    Soares, H. et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12-independent but CD70-dependent mechanism in vivo. J. Exp. Med. 204, 1095–1106 (2007).

  98. 98

    Ohnmacht, C. et al. Basophils orchestrate chronic allergic dermatitis and protective immunity against helminths. Immunity 33, 364–374 (2010).

  99. 99

    Hammad, H. et al. Inflammatory dendritic cells–not basophils–are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J. Exp. Med. 207, 2097–2111 (2010).

  100. 100

    Saenz, S.A., Noti, M. & Artis, D. Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol. 31, 407–413 (2010).

  101. 101

    Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

  102. 102

    Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

  103. 103

    Manicassamy, S. et al. Activation of β-catenin in dendritic cells regulates immunity versus tolerance in the intestine. Science 329, 849–853 (2010).

  104. 104

    Iwasaki, A. & Kelsall, B.L. Unique functions of CD11b+, CD8α+, and double-negative Peyer's patch dendritic cells. J. Immunol. 166, 4884–4890 (2001).

  105. 105

    Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

  106. 106

    Manicassamy, S. et al. Toll-like receptor 2-dependent induction of vitamin A-metabolizing enzymes in dendritic cells promotes T regulatory responses and inhibits autoimmunity. Nat. Med. 15, 401–409 (2009).

  107. 107

    Kaech, S.M. & Wherry, E.J. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27, 393–405 (2007).

  108. 108

    Jameson, S.C. & Masopust, D. Diversity in T cell memory: an embarrassment of riches. Immunity 31, 859–871 (2009).

  109. 109

    Heath, W.R. & Carbone, F.R. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 10, 1237–1244 (2009).

  110. 110

    Iwata, M. Retinoic acid production by intestinal dendritic cells and its role in T-cell trafficking. Semin. Immunol. 21, 8–13 (2009).

  111. 111

    Delgado, M.F. et al. Lack of antibody affinity maturation due to poor Toll-like receptor stimulation leads to enhanced respiratory syncytial virus disease. Nat. Med. 15, 34–41 (2009).

  112. 112

    Tan, L.K., Carlone, G.M. & Borrow, R. Advances in the development of vaccines against Neisseria meningitidis. N. Engl. J. Med. 362, 1511–1520 (2010).

  113. 113

    Romero-Steiner, S. et al. Reduction in functional antibody activity against Streptococcus pneumoniae in vaccinated elderly individuals highly correlates with decreased IgG antibody avidity. Clin. Infect. Dis. 29, 281–288 (1999).

  114. 114

    Abboud, N. et al. A requirement for FcγR in antibody-mediated bacterial toxin neutralization. J. Exp. Med. 207, 2395–2405 (2010).

  115. 115

    Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009).

  116. 116

    Sun, J.C., Beilke, J.N. & Lanier, L.L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

  117. 117

    Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell–mediated antigen-specific memory of haptens and viruses. Nat. Immunol. 11, 1127–1135 (2010).

  118. 118

    Cooper, M.A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl. Acad. Sci. USA 106, 1915–1919 (2009).

  119. 119

    Mackay, F. & Schneider, P. Cracking the BAFF code. Nat. Rev. Immunol. 9, 491–502 (2009).

  120. 120

    Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

  121. 121

    Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

  122. 122

    Deenick, E.K., Ma, C.S., Brink, R. & Tangye, S.G. Regulation of T follicular helper cell formation and function by antigen presenting cells. Curr. Opin. Immunol. 23, 111–118 (2011).

  123. 123

    Ubol, S. & Halstead, S.B. How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin. Vaccine Immunol. 17, 1829–1835 (2010).

  124. 124

    Germain, R.N. Vaccines and the future of human immunology. Immunity 33, 441–450 (2010).

  125. 125

    Davis, M.M. A prescription for human immunology. Immunity 29, 835–838 (2008).

  126. 126

    Chen, W.H. et al. Vaccination in the elderly: an immunological perspective. Trends Immunol. 30, 351–359 (2009).

  127. 127

    Levy, O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat. Rev. Immunol. 7, 379–390 (2007).

  128. 128

    Bang, B.G., Bang, F.B. & Foard, M.A. Lymphocyte depression induced in chickens on diets deficient in vitamin A and other components. Am. J. Pathol. 68, 147–162 (1972).

  129. 129

    Stephensen, C.B. Vitamin A, infection, and immune function. Annu. Rev. Nutr. 21, 167–192 (2001).

  130. 130

    Moore, S.E., Goldblatt, D., Bates, C.J. & Prentice, A.M. Impact of nutritional status on antibody responses to different vaccines in undernourished Gambian children. Acta Paediatr. 92, 170–176 (2003).

  131. 131

    Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

  132. 132

    McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513 (2005).

  133. 133

    MacLennan, I.C. et al. Extrafollicular antibody responses. Immunol. Rev. 194, 8–18 (2003).

  134. 134

    Goodnow, C.C., Sprent, J., Fazekas de St Groth, B. & Vinuesa, C.G. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435, 590–597 (2005).

  135. 135

    Phan, T.G., Gray, E.E. & Cyster, J.G. The microanatomy of B cell activation. Curr. Opin. Immunol. 21, 258–265 (2009).

  136. 136

    Victoria, G.D. et al. Germinal center drynamics by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2011).

Download references

Acknowledgements

We thank S. Plotkin for discussions; F. Sallusto for sharing the table on which Figure 1 is based; and M. Kwissa and H. Nakaya for helping with the formatting and art work for the figures. Supported by the US National Institutes of Health and the Bill & Melinda Gates Foundation.

Author information

Correspondence to Bali Pulendran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Further reading