IKKβ phosphorylation regulates RPS3 nuclear translocation and NF-κB function during infection with Escherichia coli strain O157:H7


NF-κB is a major gene regulator in immune responses, and ribosomal protein S3 (RPS3) is an NF-κB subunit that directs specific gene transcription. However, it is unknown how nuclear translocation of RPS3 is regulated. Here we report that phosphorylation of RPS3 Ser209 by the kinase IKKβ was crucial for nuclear localization of RPS3 in response to activating stimuli. Moreover, virulence protein NleH1 of the foodborne pathogen Escherichia coli strain O157:H7 specifically inhibited phosphorylation of RPS3 Ser209 and blocked RPS3 function, thereby promoting bacterial colonization and diarrhea but resulting in less mortality in a gnotobiotic piglet-infection model. Thus, the IKKβ-dependent modification of a specific amino acid in RPS3 promoted specific NF-κB functions that underlie the molecular pathogenetic mechanisms of E. coli O157:H7.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: RPS3 is phosphorylated and associates with IKKβ in response to NF-κB activation.
Figure 2: IKKβ kinase activity is required for the nuclear translocation of RPS3.
Figure 3: Importin-α-mediated nuclear translocation of RPS3 is dependent on degradation of IκBα.
Figure 4: IKKβ phosphorylates RPS3 at Ser209.
Figure 5: Phosphorylation of RPS3 at Ser209 is critical for its nuclear translocation and NF-κB-specifier function.
Figure 6: NleH1 blocks the phosphorylation of RPS3 Ser209.
Figure 7: NleH1 alters the substrate specificity of IKKβ to block IKKβ-mediated phosphorylation of RPS3.


  1. 1

    Vallabhapurapu, S. & Karin, M. Regulation and function of NF-κB transcription factors in the immune system. Annu. Rev. Immunol. 27, 693–733 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Lenardo, M.J. & Baltimore, D. NF-κB: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58, 227–229 (1989).

    CAS  Article  Google Scholar 

  3. 3

    Grilli, M., Chiu, J.J. & Lenardo, M.J. NF-κB and Rel: participants in a multiform transcriptional regulatory system. Int. Rev. Cytol. 143, 1–62 (1993).

    CAS  Article  Google Scholar 

  4. 4

    Rothwarf, D.M. & Karin, M. The NF-κB activation pathway: a paradigm in information transfer from membrane to nucleus. Sci. STKE 1999, RE1 (1999).

    CAS  PubMed  Google Scholar 

  5. 5

    Chen, L.F. & Greene, W.C. Shaping the nuclear action of NF-κB. Nat. Rev. Mol. Cell Biol. 5, 392–401 (2004).

    CAS  Article  Google Scholar 

  6. 6

    Wan, F. et al. Ribosomal protein S3: a KH domain subunit in NF-κB complexes that mediates selective gene regulation. Cell 131, 927–939 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Wan, F. & Lenardo, M.J. Specification of DNA binding activity of NF-κB proteins. Cold Spring Harb. Perspect. Biol. 1, a000067 (2009).

    Article  Google Scholar 

  8. 8

    Cadera, E.J. et al. NF-κB activity marks cells engaged in receptor editing. J. Exp. Med. 206, 1803–1816 (2009).

    CAS  Article  Google Scholar 

  9. 9

    Gao, X. et al. Bacterial effector binding to ribosomal protein s3 subverts NF-κB function. PLoS Pathog. 5, e1000708 (2009).

    Article  Google Scholar 

  10. 10

    Warner, J.R. & McIntosh, K.B. How common are extraribosomal functions of ribosomal proteins? Mol. Cell 34, 3–11 (2009).

    CAS  Article  Google Scholar 

  11. 11

    Hegde, V., Wang, M. & Deutsch, W.A. Characterization of human ribosomal protein S3 binding to 7,8-dihydro-8-oxoguanine and abasic sites by surface plasmon resonance. DNA Repair (Amst.) 3, 121–126 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Kim, J. et al. Implication of mammalian ribosomal protein S3 in the processing of DNA damage. J. Biol. Chem. 270, 13620–13629 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Jang, C.Y., Lee, J.Y. & Kim, J. RpS3, a DNA repair endonuclease and ribosomal protein, is involved in apoptosis. FEBS Lett. 560, 81–85 (2004).

    CAS  Article  Google Scholar 

  14. 14

    Leader, D.P. Phosphorylated and other modified forms of eukaryotic ribosomal protein S3 analysed by two-dimensional gel electrophoresis. Biochem. J. 189, 241–245 (1980).

    CAS  Article  Google Scholar 

  15. 15

    Shin, H.S. et al. Arginine methylation of ribosomal protein S3 affects ribosome assembly. Biochem. Biophys. Res. Commun. 385, 273–278 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Kim, T.S., Kim, H.D., Shin, H.S. & Kim, J. Phosphorylation status of nuclear ribosomal protein S3 is reciprocally regulated by protein kinase Cδ and protein phosphatase 2A. J. Biol. Chem. 284, 21201–21208 (2009).

    CAS  Article  Google Scholar 

  17. 17

    Kim, T.S., Kim, H.D. & Kim, J. PKCδ-dependent functional switch of rpS3 between translation and DNA repair. Biochim. Biophys. Acta 1793, 395–405 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Kim, H.D., Lee, J.Y. & Kim, J. Erk phosphorylates threonine 42 residue of ribosomal protein S3. Biochem. Biophys. Res. Commun. 333, 110–115 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Scheidereit, C. IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene 25, 6685–6705 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Karin, M. How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene 18, 6867–6874 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Israel, A. The IKK complex: an integrator of all signals that activate NF-κB? Trends Cell Biol. 10, 129–133 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Fagerlund, R., Melen, K., Cao, X. & Julkunen, I. NF-κB p52, RelB and c-Rel are transported into the nucleus via a subset of importin α molecules. Cell. Signal. 20, 1442–1451 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Fagerlund, R., Kinnunen, L., Kohler, M., Julkunen, I. & Melen, K. NF-κB is transported into the nucleus by importin α3 and importin α4. J. Biol. Chem. 280, 15942–15951 (2005).

    CAS  Article  Google Scholar 

  25. 25

    Imbert, V. et al. Tyrosine phosphorylation of IκB-α activates NF-κB without proteolytic degradation of IκB-α. Cell 86, 787–798 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Gloire, G. et al. Promoter-dependent effect of IKKα on NF-κB/p65 DNA binding. J. Biol. Chem. 282, 21308–21318 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Fan, C., Li, Q., Ross, D. & Engelhardt, J.F. Tyrosine phosphorylation of IκBα activates NFκB through a redox-regulated and c-Src-dependent mechanism following hypoxia/reoxygenation. J. Biol. Chem. 278, 2072–2080 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Wegener, E. et al. Essential role for IκB kinase β in remodeling Carma1-Bcl10-Malt1 complexes upon T cell activation. Mol. Cell 23, 13–23 (2006).

    CAS  Article  Google Scholar 

  29. 29

    Shaul, J.D., Farina, A. & Huxford, T. The human IKKβ subunit kinase domain displays CK2-like phosphorylation specificity. Biochem. Biophys. Res. Commun. 374, 592–597 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Wan, F. & Lenardo, M.J. The nuclear signaling of NF-κB: current knowledge, new insights, and future perspectives. Cell Res. 20, 24–33 (2010).

    CAS  Article  Google Scholar 

  31. 31

    Sears, C.L. & Kaper, J.B. Enteric bacterial toxins: mechanisms of action and linkage to intestinal secretion. Microbiol. Rev. 60, 167–215 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Cornelis, G.R. The type III secretion injectisome, a complex nanomachine for intracellular 'toxin' delivery. Biol. Chem. (2010).

  33. 33

    Nadler, C. et al. The type III secretion effector NleE inhibits NF-κB activation. PLoS Pathog. 6, e1000743 (2010).

    Article  Google Scholar 

  34. 34

    Newton, H.J. et al. The type III effectors NleE and NleB from enteropathogenic E. coli and OspZ from Shigella block nuclear translocation of NF-κB p65. PLoS Pathog. 6, e1000898 (2010).

    Article  Google Scholar 

  35. 35

    Royan, S.V. et al. Enteropathogenic E. coli non-LEE encoded effectors NleH1 and NleH2 attenuate NF-κB activation. Mol. Microbiol. 78, 1232–1245 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Baruch, K. et al. Metalloprotease type III effectors that specifically cleave JNK and NF-κB. EMBO J. 30, 221–231 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Vossenkamper, A. et al. Inhibition of NF-κB signaling in human dendritic cells by the enteropathogenic Escherichia coli effector protein NleE. J. Immunol. 185, 4118–4127 (2010).

    Article  Google Scholar 

  38. 38

    Yen, H. et al. NleC, a type III secretion protease, compromises NF-κB activation by targeting p65/RelA. PLoS Pathog. 6, e1001231 (2010).

    CAS  Article  Google Scholar 

  39. 39

    Deng, W., Vallance, B.A., Li, Y., Puente, J.L. & Finlay, B.B. Citrobacter rodentium translocated intimin receptor (Tir) is an essential virulence factor needed for actin condensation, intestinal colonization and colonic hyperplasia in mice. Mol. Microbiol. 48, 95–115 (2003).

    CAS  Article  Google Scholar 

  40. 40

    Hacker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    Article  Google Scholar 

  41. 41

    Yu, M., Yeh, J. & Van Waes, C. Protein kinase casein kinase 2 mediates inhibitor-κB kinase and aberrant nuclear factor-κB activation by serum factor(s) in head and neck squamous carcinoma cells. Cancer Res. 66, 6722–6731 (2006).

    CAS  Article  Google Scholar 

  42. 42

    Wang, D., Westerheide, S.D., Hanson, J.L. & Baldwin, A.S. Jr. Tumor necrosis factor α-induced phosphorylation of RelA/p65 on Ser529 is controlled by casein kinase II. J. Biol. Chem. 275, 32592–32597 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Chantome, A. et al. Casein kinase II-mediated phosphorylation of NF-κB p65 subunit enhances inducible nitric-oxide synthase gene transcription in vivo. J. Biol. Chem. 279, 23953–23960 (2004).

    CAS  Article  Google Scholar 

  44. 44

    Sun, S., Elwood, J. & Greene, W.C. Both amino- and carboxyl-terminal sequences within IκBα regulate its inducible degradation. Mol. Cell. Biol. 16, 1058–1065 (1996).

    CAS  Article  Google Scholar 

  45. 45

    Geleziunas, R. et al. Human T-cell leukemia virus type 1 Tax induction of NF-κB involves activation of the IκB kinase α (IKKα) and IKKβ cellular kinases. Mol. Cell. Biol. 18, 5157–5165 (1998).

    CAS  Article  Google Scholar 

  46. 46

    Barnitz, R.A., Wan, F., Tripuraneni, V., Bolton, D.L. & Lenardo, M.J. Protein kinase A phosphorylation activates Vpr-induced cell cycle arrest during human immunodeficiency virus type-1 infection. J. Virol. 84, 6410–6424 (2010).

    CAS  Article  Google Scholar 

Download references


We thank T. Huxford (San Diego State University) and C. Wu (National Cancer Institute) for Flag-tagged SSEE and SSAA IKKβ mutants; U. Siebenlist (National Institute of Allergy and Infectious Diseases) for the hemagglutinin-tagged SSAA IκBα mutant; M. Biancalana (National Institute of Allergy and Infectious Diseases) for recombinant RPS3 protein with the tag cleaved; S. Porcella for DNA sequencing; O. Schwartz, L. Koo and S. Becker for assistance with fluorescence microscopy; and D. Levens, A. Snow and U. Siebenlist for critical reading of the manuscript. Supported by the US National Institutes of Health (R00CA137171 to F.W., a subaward of P20 RR016443, R03AI076227 and R56AI087686 to P.R.H.) and the Division of Intramural Research of the National Institute of Allergy and Infectious Diseases of the US National Institutes of Health.

Author information




F.W. and M.J.L. designed the experiments; F.W., A.W., X.G. and M.B. did the experiments; and F.W., P.R.H. and M.J.L. analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Michael J Lenardo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 (PDF 1415 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wan, F., Weaver, A., Gao, X. et al. IKKβ phosphorylation regulates RPS3 nuclear translocation and NF-κB function during infection with Escherichia coli strain O157:H7. Nat Immunol 12, 335–343 (2011). https://doi.org/10.1038/ni.2007

Download citation

Further reading