Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Quantitative events determine the differentiation and function of helper T cells

Abstract

In recent years, numerous qualitative discoveries have been made in immunology research. However, the effect of quantitative events, long recognized as the driving factors for determinism in developmental biology, that dictate the quality of the immune response elicited to an antigen in concert with microbial products still requires serious attention. Here we discuss how the often-neglected issue of quantification affects the specification, differentiation and commitment of helper T cells. As reductionist in vitro approaches have been instrumental in the elucidation of the factors determining the development of helper T cells, in this perspective we highlight the need for the standardization of protocols, also fundamental for the comparison of immune responses in mice and humans. Improving understanding of how these in vitro quantitative events translate to immune responses in vivo, which can be studied in mouse models, is of importance in obtaining information on immune responses in humans, thus empowering translational research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plasticity and commitment of helper T cells.
Figure 2: Several factors determine the absolute amount of helper T cell cytokines produced in response to infection.

Similar content being viewed by others

References

  1. Sher, A. & Coffman, R.L. Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annu. Rev. Immunol. 10, 385–409 (1992).

    Article  CAS  PubMed  Google Scholar 

  2. Constant, S.L. & Bottomly, K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15, 297–322 (1997).

    CAS  PubMed  Google Scholar 

  3. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).

    CAS  PubMed  Google Scholar 

  4. Glimcher, L.H. & Murphy, K.M. Lineage commitment in the immune system: the T helper lymphocyte grows up. Genes Dev. 14, 1693–1711 (2000).

    CAS  PubMed  Google Scholar 

  5. Casanova, J.L. & Abel, L. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20, 581–620 (2002).

    CAS  PubMed  Google Scholar 

  6. Cooper, A.M. Cell-mediated immune responses in tuberculosis. Annu. Rev. Immunol. 27, 393–422 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhu, J., Yamane, H. & Paul, W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kolls, J.K. & Khader, S.A. The role of Th17 cytokines in primary mucosal immunity. Cytokine Growth Factor Rev. 21, 443–448 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Littman, D.R. & Rudensky, A.Y. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 140, 845–858 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Stockinger, B. & Veldhoen, M. Differentiation and function of Th17 T cells. Curr. Opin. Immunol. 19, 281–286 (2007).

    CAS  PubMed  Google Scholar 

  11. Tato, C.M. & Cua, D.J. Reconciling id, ego, and superego within interleukin-23. Immunol. Rev. 226, 103–111 (2008).

    CAS  PubMed  Google Scholar 

  12. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10, 857–863 (2009).

    CAS  PubMed  Google Scholar 

  13. Trifari, S., Kaplan, C.D., Tran, E.H., Crellin, N.K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat. Immunol. 10, 864–871 (2009).

    CAS  PubMed  Google Scholar 

  14. Trifari, S. & Spits, H. IL-22-producing CD4+ T cells: middle-men between the immune system and its environment. Eur. J. Immunol. 40, 2369–2371 (2010).

    CAS  PubMed  Google Scholar 

  15. de Jong, A. et al. CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nat. Immunol. 11, 1102–1109 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mucida, D. et al. Retinoic acid can directly promote TGF-β-mediated Foxp3+ Treg cell conversion of naive T cells. Immunity 30, 471–472 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Cruz, A. et al. Pathological role of interleukin 17 in mice subjected to repeated BCG vaccination after infection with Mycobacterium tuberculosis. J. Exp. Med. 207, 1609–1616 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. O'Shea, J.J. & Paul, W.E. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science (New York, N. Y 327, 1098–1102 (2010).

    CAS  Google Scholar 

  21. Reinhardt, R.L., Khoruts, A., Merica, R., Zell, T. & Jenkins, M.K. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410, 101–105 (2001).

    CAS  PubMed  Google Scholar 

  22. Fazilleau, N., McHeyzer-Williams, L.J., Rosen, H. & McHeyzer-Williams, M.G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10, 375–384 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Reinhardt, R.L., Liang, H.E. & Locksley, R.M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnston, R.J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Vinuesa, C.G., Linterman, M.A., Goodnow, C.C. & Randall, K.L. T cells and follicular dendritic cells in germinal center B-cell formation and selection. Immunol. Rev. 237, 72–89 (2010).

    CAS  PubMed  Google Scholar 

  26. Murphy, E. et al. Reversibility of T helper 1 and 2 populations is lost after long-term stimulation. J. Exp. Med. 183, 901–913 (1996).

    CAS  PubMed  Google Scholar 

  27. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  PubMed  Google Scholar 

  28. Lee, G.R., Kim, S.T., Spilianakis, C.G., Fields, P.E. & Flavell, R.A. T helper cell differentiation: regulation by cis elements and epigenetics. Immunity 24, 369–379 (2006).

    CAS  PubMed  Google Scholar 

  29. Wohlfert, E. & Belkaid, Y. Plasticity of Treg at infected sites. Mucosal Immunol. 3, 213–215 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Locksley, R.M. Nine lives: plasticity among T helper cell subsets. J. Exp. Med. 206, 1643–1646 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Murphy, K.M. & Stockinger, B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat. Immunol. 11, 674–680 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Fazilleau, N., McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Local development of effector and memory T helper cells. Curr. Opin. Immunol. 19, 259–267 (2007).

    CAS  PubMed  Google Scholar 

  33. Malherbe, L., Mark, L., Fazilleau, N., McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Vaccine adjuvants alter TCR-based selection thresholds. Immunity 28, 698–709 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. O'Garra, A. & Murphy, K.M. From IL-10 to IL-12: how pathogens and their products stimulate APCs to induce TH1 development. Nat. Immunol. 10, 929–932 (2009).

    CAS  PubMed  Google Scholar 

  35. Constant, S., Pfeiffer, C., Woodard, A., Pasqualini, T. & Bottomly, K. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J. Exp. Med. 182, 1591–1596 (1995).

    CAS  PubMed  Google Scholar 

  36. Hosken, N.A., Shibuya, K., Heath, A.W., Murphy, K.M. & O'Garra, A. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-αβ-transgenic model. J. Exp. Med. 182, 1579–1584 (1995).

    CAS  PubMed  Google Scholar 

  37. Iezzi, G. et al. CD40–CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4+ T cells. Proc. Natl. Acad. Sci. USA 106, 876–881 (2009).

    PubMed  PubMed Central  Google Scholar 

  38. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat. Immunol. 1, 311–316 (2000).

    CAS  PubMed  Google Scholar 

  39. Nembrini, C., Abel, B., Kopf, M. & Marsland, B.J. Strong TCR signaling, TLR ligands, and cytokine redundancies ensure robust development of type 1 effector T cells. J. Immunol. 176, 7180–7188 (2006).

    CAS  PubMed  Google Scholar 

  40. Ruedl, C., Bachmann, M.F. & Kopf, M. The antigen dose determines T helper subset development by regulation of CD40 ligand. Eur. J. Immunol. 30, 2056–2064 (2000).

    CAS  PubMed  Google Scholar 

  41. Valitutti, S., Muller, S., Cella, M., Padovan, E. & Lanzavecchia, A. Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995).

    CAS  PubMed  Google Scholar 

  42. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    CAS  PubMed  Google Scholar 

  43. Viola, A. et al. Quantitative contribution of CD4 and CD8 to T cell antigen receptor serial triggering. J. Exp. Med. 186, 1775–1779 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gett, A.V., Sallusto, F., Lanzavecchia, A. & Geginat, J. T cell fitness determined by signal strength. Nat. Immunol. 4, 355–360 (2003).

    CAS  PubMed  Google Scholar 

  45. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Iezzi, G., Scotet, E., Scheidegger, D. & Lanzavecchia, A. The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur. J. Immunol. 29, 4092–4101 (1999).

    CAS  PubMed  Google Scholar 

  47. Lee, K.H. et al. The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218–1222 (2003).

    CAS  PubMed  Google Scholar 

  48. Miller, M.J., Safrina, O., Parker, I. & Cahalan, M.D. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J. Exp. Med. 200, 847–856 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Paulos, C.M. et al. The inducible costimulator (ICOS) is critical for the development of human TH17 cells. Sci. Transl. Med. 2, 55ra78 (2010).

    PubMed  PubMed Central  Google Scholar 

  50. Bauquet, A.T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 10, 167–175 (2009).

    CAS  PubMed  Google Scholar 

  51. Saraiva, M. & O'Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol. 10, 167–175 (2009).

    Google Scholar 

  52. Tao, X., Constant, S., Jorritsma, P. & Bottomly, K. Strength of TCR signal determines the costimulatory requirements for Th1 and Th2 CD4+ T cell differentiation. J. Immunol. 159, 5956–5963 (1997).

    CAS  PubMed  Google Scholar 

  53. Jorritsma, P.J., Brogdon, J.L. & Bottomly, K. Role of TCR-induced extracellular signal-regulated kinase activation in the regulation of early IL-4 expression in naive CD4+ T cells. J. Immunol. 170, 2427–2434 (2003).

    CAS  PubMed  Google Scholar 

  54. Yamane, H., Zhu, J. & Paul, W.E. Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J. Exp. Med. 202, 793–804 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Pfeiffer, C. et al. Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. J. Exp. Med. 181, 1569–1574 (1995).

    CAS  PubMed  Google Scholar 

  56. Aguado, E. et al. Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296, 2036–2040 (2002).

    CAS  PubMed  Google Scholar 

  57. Aguilar-Pimentel, J.A. et al. Specific CD8 T cells in IgE-mediated allergy correlate with allergen dose and allergic phenotype. Am. J. Respir. Crit. Care Med. 181, 7–16 (2010).

    CAS  PubMed  Google Scholar 

  58. Jakob, T. et al. Novel mouse mutants with primary cellular immunodeficiencies generated by genome-wide mutagenesis. J. Allergy Clin. Immunol. 121, 179–184 (2008).

    CAS  PubMed  Google Scholar 

  59. Jun, J.E. et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18, 751–762 (2003).

    CAS  PubMed  Google Scholar 

  60. Malissen, B., Aguado, E. & Malissen, M. Role of the LAT adaptor in T-cell development and Th2 differentiation. Adv. Immunol. 87, 1–25 (2005).

    CAS  PubMed  Google Scholar 

  61. Siggs, O.M. et al. Opposing functions of the T cell receptor kinase ZAP-70 in immunity and tolerance differentially titrate in response to nucleotide substitutions. Immunity 27, 912–926 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sommers, C.L. et al. A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296, 2040–2043 (2002).

    CAS  PubMed  Google Scholar 

  63. Steinfelder, S. et al. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J. Exp. Med. 206, 1681–1690 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Milner, J.D., Fazilleau, N., McHeyzer-Williams, M. & Paul, W. Cutting edge: lack of high affinity competition for peptide in polyclonal CD4+ responses unmasks IL-4 production. J. Immunol. 184, 6569–6573 (2010).

    CAS  PubMed  Google Scholar 

  65. Eisenbarth, S.C. et al. Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med. 196, 1645–1651 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat. Med. 15, 410–416 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Hill, J.A. et al. Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi cells. Immunity 29, 758–770 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Nolting, J. et al. Retinoic acid can enhance conversion of naive into regulatory T cells independently of secreted cytokines. J. Exp. Med. 206, 2131–2139 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nat. Immunol. 6, 1219–1227 (2005).

    CAS  PubMed  Google Scholar 

  70. Gabryšová, L. et al. Integrated T cell receptor and costimulatory signals determine TGFβ-dependent differentiation and maintenance of Foxp3+ regulatory T cells. Eur. J. Immunol. published online, doi:10.1002/eji.201041073 (24 February 2011).

  71. Oliveira, V.G., Caridade, M., Paiva, R.S., Demengeot, J. & Graca, L. Sub-optimal CD4 T cell activation triggers autonomous TGF-β-dependent conversion to Foxp3+ regulatory T cells. Eur. J. Immunol. published online, doi:10.1002/eji.201040896 (24 February 2011).

  72. Turner, M.S., Kane, L.P. & Morel, P.A. Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion. J. Immunol. 183, 4895–4903 (2009).

    CAS  PubMed  Google Scholar 

  73. Battaglia, M., Stabilini, A. & Roncarolo, M.G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105, 4743–4748 (2005).

    CAS  PubMed  Google Scholar 

  74. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. USA 105, 7797–7802 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 11, 7–13 (2010).

    CAS  PubMed  Google Scholar 

  76. Gabrysova, L. et al. Negative feedback control of the autoimmune response through antigen-induced differentiation of IL-10-secreting Th1 cells. J. Exp. Med. 206, 1755–1767 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Gabrysova, L. & Wraith, D.C. Antigenic strength controls the generation of antigen-specific IL-10-secreting T regulatory cells. Eur. J. Immunol. 40, 1386–1395 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. O'Garra, A. & Vieira, P. Regulatory T cells and mechanisms of immune system control. Nat. Med. 10, 801–805 (2004).

    CAS  PubMed  Google Scholar 

  79. O'Garra, A. & Vieira, P. TH1 cells control themselves by producing interleukin-10. Nat. Rev. Immunol. 7, 425–428 (2007).

    CAS  PubMed  Google Scholar 

  80. Trinchieri, G. Interleukin-10 production by effector T cells: Th1 cells show self control. J. Exp. Med. 204, 239–243 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Saraiva, M. et al. Interleukin-10 production by Th1 cells requires interleukin-12-induced STAT4 transcription factor and ERK MAP kinase activation by high antigen dose. Immunity 31, 209–219 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Dresser, D.W. Specific inhibition of antibody production. II. Paralysis induced in adult mice by small quantities of protein antigen. Immunology 5, 378–388 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Dresser, D.W. Specific inhibition of antibody production. I. Protein-over loading paralysis. Immunology 5, 161–168 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Mitchison, N.A. Induction of immunological paralysis in two zones of dosage. Proc. R. Soc. Lond. B 161, 275–292 (1964).

    CAS  PubMed  Google Scholar 

  85. Akdis, C.A., Joss, A., Akdis, M. & Blaser, K. Mechanism of IL-10-induced T cell inactivation in allergic inflammation and normal response to allergens. Int. Arch. Allergy Immunol. 124, 180–182 (2001).

    CAS  PubMed  Google Scholar 

  86. Meiler, F. et al. In vivo switch to IL-10-secreting T regulatory cells in high dose allergen exposure. J. Exp. Med. 205, 2887–2898 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Parish, C.R. & Liew, F.Y. Immune response to chemically modified flagellin. 3. Enhanced cell-mediated immunity during high and low zone antibody tolerance to flagellin. J. Exp. Med. 135, 298–311 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Liew, F.Y. TH1 and TH2 cells: a historical perspective. Nat. Rev. Immunol. 2, 55–60 (2002).

    CAS  PubMed  Google Scholar 

  89. Mosmann, T.R. & Coffman, R.L. Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv. Immunol. 46, 111–147 (1989).

    CAS  PubMed  Google Scholar 

  90. Redford, P.S. et al. Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung. Eur. J. Immunol. 40, 2200–2210 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Anderson, P. Post-transcriptional control of cytokine production. Nat. Immunol. 9, 353–359 (2008).

    CAS  PubMed  Google Scholar 

  92. Pascual, V., Chaussabel, D. & Banchereau, J. A genomic approach to human autoimmune diseases. Annu. Rev. Immunol. 28, 535–571 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Pulendran, B., Li, S. & Nakaya, H.I. Systems vaccinology. Immunity 33, 516–529 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Green, J.B. & Smith, J.C. Growth factors as morphogens: do gradients and thresholds establish body plan? Trends Genet. 7, 245–250 (1991).

    CAS  PubMed  Google Scholar 

  95. Ansel, K.M., Djuretic, I., Tanasa, B. & Rao, A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol. 24, 607–656 (2006).

    CAS  PubMed  Google Scholar 

  96. Messi, M. et al. Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nat. Immunol. 4, 78–86 (2003).

    CAS  PubMed  Google Scholar 

  97. Agarwal, S. & Rao, A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity 9, 765–775 (1998).

    CAS  PubMed  Google Scholar 

  98. Veldhoen, M., Hirota, K., Christensen, J., O'Garra, A. & Stockinger, B. Natural agonists for aryl hydrocarbon receptor in culture medium are essential for optimal differentiation of Th17 T cells. J. Exp. Med. 206, 43–49 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Yang, X. et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat. Immunol. 12, 247–254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Langhorne, A. Potocnik, G. Kassiotis and A. Howes for review of the manuscript and comments, and P. Redford for compiling Figure 2. Supported by the Medical Research Council UK (A.O.G. and L.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hergen Spits.

Ethics declarations

Competing interests

H.S. works one day per week for AIMM Therapeutics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Garra, A., Gabryšová, L. & Spits, H. Quantitative events determine the differentiation and function of helper T cells. Nat Immunol 12, 288–294 (2011). https://doi.org/10.1038/ni.2003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2003

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing