Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β

Abstract

The molecular mechanisms that direct the development of TCRαβ+CD8αα+ intestinal intraepithelial lymphocytes (IELs) are not thoroughly understood. Here we show that transforming growth factor-β (TGF-β) controls the development of TCRαβ+CD8αα+ IELs. Mice with either a null mutation in the gene encoding TGF-β1 or T cell–specific deletion of TGF-β receptor I lacked TCRαβ+CD8αα+ IELs, whereas mice with transgenic overexpression of TGF-β1 had a larger population of TCRαβ+CD8αα+ IELs. We observed defective development of the TCRαβ+CD8αα+ IEL thymic precursors (CD4CD8TCRαβ+CD5+) in the absence of TGF-β. In addition, we found that TGF-β signaling induced CD8α expression in TCRαβ+CD8αα+ IEL thymic precursors and induced and maintained CD8α expression in peripheral populations of T cells. Our data demonstrate a previously unrecognized role for TGF-β in the development of TCRαβ+CD8αα+ IELs and the expression of CD8α in T cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mice that lack TGF-β-signaling have fewer TCRαβ+CD8αα+ IELs.
Figure 2: Smad3−/− mice have fewer TCRαβ+CD8αα+ IELs.
Figure 3: Overexpression of TGF-β1 from T cells leads to a larger population of TCRαβ+CD8αα+ IELs.
Figure 4: TGF-β-deficient mice have a smaller population of DN TCRαβ+CD5+ thymocytes.
Figure 5: TGF-β induces CD8α expression on DN TCRαβ+CD5+ thymocytes.
Figure 6: TGF-β is needed to maintain expression of CD8 on peripheral T cells.
Figure 7: TGF-β induces expression of CD8α on peripheral CD4+ T cells in a Smad3-dependent manner.
Figure 8: Expression of Th-POK and Runx3 in CD4+CD8α and CD4+CD8α+ cells.

References

  1. 1

    van Wijk, F. & Cheroutre, H. Intestinal T cells: facing the mucosal immune dilemma with synergy and diversity. Semin. Immunol. 21, 130–138 (2009).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Denning, T.L. et al. Mouse TCRαβ+CD8αα intraepithelial lymphocytes express genes that down-regulate their antigen reactivity and suppress immune responses. J. Immunol. 178, 4230–4239 (2007).

    CAS  Article  PubMed  Google Scholar 

  3. 3

    Saurer, L. et al. Virus-induced activation of self-specific TCRαβ CD8αα intraepithelial lymphocytes does not abolish their self-tolerance in the intestine. J. Immunol. 172, 4176–4183 (2004).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Yamagata, T., Mathis, D. & Benoist, C. Self-reactivity in thymic double-positive cells commits cells to a CD8αα lineage with characteristics of innate immune cells. Nat. Immunol. 5, 597–605 (2004).

    CAS  Article  PubMed  Google Scholar 

  5. 5

    Poussier, P., Ning, T., Banerjee, D. & Julius, M. A unique subset of self-specific intraintestinal T cells maintains gut integrity. J. Exp. Med. 195, 1491–1497 (2002).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Guy-Grand, D. & Vassalli, P. Immunology. Tracing an orphan's genealogy. Science 305, 185–187 (2004).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Gangadharan, D. et al. Identification of pre- and postselection TCRαβ+ intraepithelial lymphocyte precursors in the thymus. Immunity 25, 631–641 (2006).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Leishman, A.J. et al. Precursors of functional MHC class I- or class II-restricted CD8αα+ T cells are positively selected in the thymus by agonist self-peptides. Immunity 16, 355–364 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Rocha, B., Vassalli, P. & Guy-Grand, D. The Vβ repertoire of mouse gut homodimeric αCD8+ intraepithelial T cell receptor α/β+ lymphocytes reveals a major extrathymic pathway of T cell differentiation. J. Exp. Med. 173, 483–486 (1991).

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Ma, L.J., Acero, L.F., Zal, T. & Schluns, K.S. Trans-presentation of IL-15 by intestinal epithelial cells drives development of CD8αα IELs. J. Immunol. 183, 1044–1054 (2009).

    CAS  Article  PubMed  Google Scholar 

  12. 12

    Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Kronenberg, M. & Gapin, L. The unconventional lifestyle of NKT cells. Nat. Rev. Immunol. 2, 557–568 (2002).

    CAS  Article  PubMed  Google Scholar 

  14. 14

    Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9, 632–640 (2008).

    CAS  Article  Google Scholar 

  15. 15

    Doisne, J.M. et al. iNKT cell development is orchestrated by different branches of TGF-β signaling. J. Exp. Med. 206, 1365–1378 (2009).

    CAS  Article  PubMed  Google Scholar 

  16. 16

    Kuo, S., El Guindy, A., Panwala, C.M., Hagan, P.M. & Camerini, V. Differential appearance of T cell subsets in the large and small intestine of neonatal mice. Pediatr. Res. 49, 543–551 (2001).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    Podd, B.S., Aberg, C., Christopher, T.L., Perez-Cano, F. & Camerini, V. Late postnatal expansion of self-reactive CD8αα+ intestinal intraepithelial lymphocytes in mice. Autoimmunity 37, 537–547 (2004).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Christ, M. et al. Immune dysregulation in TGF-β 1-deficient mice. J. Immunol. 153, 1936–1946 (1994).

    CAS  PubMed  Google Scholar 

  19. 19

    Derynck, R. & Zhang, Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577–584 (2003).

    CAS  Article  PubMed  Google Scholar 

  20. 20

    Hall, B.E. et al. Conditional overexpression of TGF-β 1 disrupts mouse salivary gland development and function. Lab. Invest. 90, 543–555 (2010).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Chen, W. et al. Requirement for transforming growth factor β1 in controlling T cell apoptosis. J. Exp. Med. 194, 439–453 (2001).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Ouyang, W., Beckett, O., Ma, Q. & Li, M.O. Transforming growth factor-β signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32, 642–653 (2010).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1−/− mice. Cell 89, 1011–1019 (1997).

    CAS  Article  PubMed  Google Scholar 

  24. 24

    Park, J.H. et al. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257–264 (2010).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Xue, H.H. et al. IL-2 negatively regulates IL-7 receptor α chain expression in activated T lymphocytes. Proc. Natl. Acad. Sci. USA 99, 13759–13764 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Staton, T.L. et al. CD8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium. Nat. Immunol. 7, 482–488 (2006).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Mintern, J.D., Maurice, M.M., Ploegh, H.L. & Schott, E. Thymic selection and peripheral activation of CD8 T cells by the same class I MHC/peptide complex. J. Immunol. 172, 699–708 (2004).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Parker, C.M. et al. A family of β 7 integrins on human mucosal lymphocytes. Proc. Natl. Acad. Sci. USA 89, 1924–1928 (1992).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    Wang, L. & Bosselut, R. CD4–CD8 lineage differentiation: Thpok-ing into the nucleus. J. Immunol. 183, 2903–2910 (2009).

    CAS  Article  PubMed  Google Scholar 

  30. 30

    Zamisch, M. et al. The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. J. Exp. Med. 206, 2685–2699 (2009).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Wang, L. et al. Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4+ T cells. Nat. Immunol. 9, 1122–1130 (2008).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Li, M.O., Sanjabi, S. & Flavell, R.A. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455–471 (2006).

    CAS  Article  Google Scholar 

  33. 33

    Parel, Y. & Chizzolini, C. CD4+CD8+ double positive (DP) T cells in health and disease. Autoimmun. Rev. 3, 215–220 (2004).

    Article  PubMed  Google Scholar 

  34. 34

    Das, G. et al. An important regulatory role for CD4+CD8αα T cells in the intestinal epithelial layer in the prevention of inflammatory bowel disease. Proc. Natl. Acad. Sci. USA 100, 5324–5329 (2003).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Wang, L. et al. The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells. Immunity 29, 876–887 (2008).

    Article  PubMed  Google Scholar 

  36. 36

    Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6, 373–381 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Marie, J.C., Letterio, J.J., Gavin, M. & Rudensky, A.Y. TGF-β 1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. J. Exp. Med. 201, 1061–1067 (2005).

    CAS  Article  PubMed  Google Scholar 

  39. 39

    Lefrancois, L. Phenotypic complexity of intraepithelial lymphocytes of the small intestine. J. Immunol. 147, 1746–1751 (1991).

    CAS  PubMed  Google Scholar 

  40. 40

    Hostert, A. et al. A CD8 genomic fragment that directs subset-specific expression of CD8 in transgenic mice. J. Immunol. 158, 4270–4281 (1997).

    CAS  PubMed Central  PubMed  Google Scholar 

  41. 41

    Blanc, D. et al. Gene transfer of the Ly-3 chain gene of the mouse CD8 molecular complex: co-transfer with the Ly-2 polypeptide gene results in detectable cell surface expression of the Ly-3 antigenic determinants. Eur. J. Immunol. 18, 613–619 (1988).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Sato, T. et al. Dual functions of Runx proteins for reactivating CD8 and silencing CD4 at the commitment process into CD8 thymocytes. Immunity 22, 317–328 (2005).

    CAS  Article  Google Scholar 

  43. 43

    Hanai, J. et al. Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Cα promoter. J. Biol. Chem. 274, 31577–31582 (1999).

    CAS  Article  PubMed  Google Scholar 

  44. 44

    Miyazono, K., Maeda, S. & Imamura, T. Coordinate regulation of cell growth and differentiation by TGF-β superfamily and Runx proteins. Oncogene 23, 4232–4237 (2004).

    CAS  Article  PubMed  Google Scholar 

  45. 45

    Klunker, S. et al. Transcription factors RUNX1 and RUNX3 in the induction and suppressive function of Foxp3+ inducible regulatory T cells. J. Exp. Med. 206, 2701–2715 (2009).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Grueter, B. et al. Runx3 regulates integrin αE/CD103 and CD4 expression during development of CD4/CD8+ T cells. J. Immunol. 175, 1694–1705 (2005).

    CAS  Article  PubMed  Google Scholar 

  47. 47

    Ellmeier, W., Sunshine, M.J., Losos, K., Hatam, F. & Littman, D.R. An enhancer that directs lineage-specific expression of CD8 in positively selected thymocytes and mature T cells. Immunity 7, 537–547 (1997).

    CAS  Article  Google Scholar 

  48. 48

    Yang, X. et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J. 18, 1280–1291 (1999).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Hall, J.A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29, 637–649 (2008).

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank G. McGrady and S. Wahl (National Institute of Dental and Craniofacial Research, National Institutes of Health) for Tgfb1−/− mice, and E. Stregevsky and J. Simone for technical assistance. Supported by the Intramural Research Program of the National Institutes of Health, National Institute of Dental and Craniofacial Research and National Cancer Institute, Center for Cancer Research.

Author information

Affiliations

Authors

Contributions

J.E.K. designed and did experiments, analyzed data and wrote the manuscript; T.M., B.F.Z. and P.Z. did experiments; B.E.H. and A.B.K. provided critical materials; A.C.C. and Y.X. did experiments and provided critical materials, R.B. provided materials and read the manuscript; and W.C. initiated and directed the research, designed experiments and wrote the manuscript.

Corresponding author

Correspondence to WanJun Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 8275 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Konkel, J., Maruyama, T., Carpenter, A. et al. Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. Nat Immunol 12, 312–319 (2011). https://doi.org/10.1038/ni.1997

Download citation

Further reading