Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epithelial microRNAs regulate gut mucosal immunity via epithelium–T cell crosstalk

Abstract

Colonic homeostasis entails epithelium-lymphocyte cooperation, yet many participants in this process are unknown. We show here that epithelial microRNAs mediate the mucosa–immune system crosstalk necessary for mounting protective T helper type 2 (TH2) responses. Abolishing the induction of microRNA by gut-specific deletion of Dicer1 (Dicer1Δgut), which encodes an enzyme involved in microRNA biogenesis, deprived goblet cells of RELMβ, a key TH2 antiparasitic cytokine; this predisposed the host to parasite infection. Infection of Dicer1Δgut mice with helminths favored a futile TH1 response with hallmarks of inflammatory bowel disease. Interleukin 13 (IL-13) induced the microRNA miR-375, which regulates the expression of TSLP, a TH2-facilitating epithelial cytokine; this indicated a TH2-amplification loop. We found that miR-375 was required for RELMβ expression in vivo; miR-375-deficient mice had significantly less intestinal RELMβ, which possibly explains the greater susceptibility of Dicer1Δgut mice to parasites. Our findings indicate that epithelial microRNAs are key regulators of gut homeostasis and mucosal immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inducible ablation of Dicer1 specifically in the gut epithelium results in depletion of goblet cells.
Figure 2: The microRNA miR-375 is a key factor in goblet cell differentiation.
Figure 3: Klf5 is a target of miR-375.
Figure 4: Immunological changes after Dicer1 ablation in the gut.
Figure 5: Deletion of Dicer1 in the gut epithelium results in ineffective inflammatory responses to and susceptibility to T. muris.
Figure 6: IL-13 induces miR-375 expression via the PI(3)K pathway.
Figure 7: Regulation of TSLP expression by miR-375.

Similar content being viewed by others

References

  1. Artis, D. et al. RELMβ/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc. Natl. Acad. Sci. USA 101, 13596–13600 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee, J. et al. Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat. Cell Biol. 8, 1327–1336 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Taylor, B.C. et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 206, 655–667 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schickel, R., Boyerinas, B., Park, S.M. & Peter, M.E. MicroRNAs: key players in the immune system, differentiation, tumorigenesis and cell death. Oncogene 27, 5959–5974 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Bushati, N. & Cohen, S.M. microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koralov, S.B. et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132, 860–874 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. O'Rourke, J.R. et al. Essential role for Dicer during skeletal muscle development. Dev. Biol. 311, 359–368 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Andl, T. et al. The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr. Biol. 16, 1041–1049 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Harfe, B.D., McManus, M.T., Mansfield, J.H., Hornstein, E. & Tabin, C.J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl. Acad. Sci. USA 102, 10898–10903 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. van der Flier, L.G. & Clevers, H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu. Rev. Physiol. 71, 241–260 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Velcich, A. et al. Patterns of expression of lineage-specific markers during the in vitro-induced differentiation of HT29 colon carcinoma cells. Cell Growth Differ. 6, 749–757 (1995).

    CAS  PubMed  Google Scholar 

  17. Augeron, C. & Laboisse, C.L. Emergence of permanently differentiated cell clones in a human colonic cancer cell line in culture after treatment with sodium butyrate. Cancer Res. 44, 3961–3969 (1984).

    CAS  PubMed  Google Scholar 

  18. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Cummins, J.M. et al. The colorectal microRNAome. Proc. Natl. Acad. Sci. USA 103, 3687–3692 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kida, Y. & Han, Y.P. MicroRNA expression in colon adenocarcinoma. J. Am. Med. Assoc. 299, 2628 (2008).

    Article  CAS  Google Scholar 

  21. Wu, F. et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2α. Gastroenterology 135, 1624–1635 e1624 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Avnit-Sagi, T., Kantorovich, L., Kredo-Russo, S., Hornstein, E. & Walker, M.D. The promoter of the pri-miR-375 gene directs expression selectively to the endocrine pancreas. PLoS ONE 4, e5033 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Poy, M.N. et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc. Natl. Acad. Sci. USA 106, 5813–5818 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shroyer, N.F., Wallis, D., Venken, K.J., Bellen, H.J. & Zoghbi, H.Y. Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev. 19, 2412–2417 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Friedman, R.C., Farh, K.K., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McConnell, B.B., Ghaleb, A.M., Nandan, M.O. & Yang, V.W. The diverse functions of Kruppel-like factors 4 and 5 in epithelial biology and pathobiology. Bioessays 29, 549–557 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dang, D.T., Zhao, W., Mahatan, C.S., Geiman, D.E. & Yang, V.W. Opposing effects of Kruppel-like factor 4 (gut-enriched Kruppel-like factor) and Kruppel-like factor 5 (intestinal-enriched Kruppel-like factor) on the promoter of the Kruppel-like factor 4 gene. Nucleic Acids Res. 30, 2736–2741 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Van der Sluis, M. et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131, 117–129 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Saenz, S.A., Taylor, B.C. & Artis, D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol. Rev. 226, 172–190 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kelly, D., Conway, S. & Aminov, R. Commensal gut bacteria: mechanisms of immune modulation. Trends Immunol. 26, 326–333 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Panesar, T.S. The early phase of tissue invasion by Trichuris muris (nematoda: Trichuroidea). Z. Parasitenkd. 66, 163–166 (1981).

    Article  CAS  PubMed  Google Scholar 

  32. Cliffe, L.J. & Grencis, R.K. The Trichuris muris system: a paradigm of resistance and susceptibility to intestinal nematode infection. Adv. Parasitol. 57, 255–307 (2004).

    Article  PubMed  Google Scholar 

  33. Wang, M.L. et al. Immune-mediated signaling in intestinal goblet cells via PI3-kinase- and AKT-dependent pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 295, G1122–G1130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Langlois, M.J. et al. Epithelial phosphatase and tensin homolog regulates intestinal architecture and secretory cell commitment and acts as a modifier gene in neoplasia. FASEB J. 23, 1835–1844 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Poy, M.N. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. McKenna, L.B. et al. MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology 139, 1654–1664 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Hauber, H.P., Lavigne, F., Hung, H.L., Levitt, R.C. & Hamid, Q. Effect of Th2 type cytokines on hCLCA1 and mucus expression in cystic fibrosis airways. J. Cyst. Fibros. 9, 277–279 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Katz, J.P. et al. The zinc-finger transcription factor Klf4 is required for terminal differentiation of goblet cells in the colon. Development 129, 2619–2628 (2002).

    CAS  PubMed  Google Scholar 

  39. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nat. Genet. 39, 1278–1284 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Ishikawa, N., Wakelin, D. & Mahida, Y.R. Role of T helper 2 cells in intestinal goblet cell hyperplasia in mice infected with Trichinella spiralis. Gastroenterology 113, 542–549 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Friend, S.L. et al. A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp. Hematol. 22, 321–328 (1994).

    CAS  PubMed  Google Scholar 

  43. Perrigoue, J.G. et al. MHC class II–dependent basophil–CD4+ T cell interactions promote TH2 cytokine–dependent immunity. Nat. Immunol. 10, 697–705 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sokol, C.L. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol. 10, 713–720 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wynn, T.A. Basophils trump dendritic cells as APCs for TH2 responses. Nat. Immunol. 10, 679–681 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6, 507–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Tili, E. et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-α stimulation and their possible roles in regulating the response to endotoxin shock. J. Immunol. 179, 5082–5089 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Bancroft, A.J., Artis, D., Donaldson, D.D., Sypek, J.P. & Grencis, R.K. Gastrointestinal nematode expulsion in IL-4 knockout mice is IL-13 dependent. Eur. J. Immunol. 30, 2083–2091 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Shi, R. & Chiang, V.L. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques 39, 519–525 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Stern-Ginossar, N. et al. Host immune system gene targeting by a viral miRNA. Science 317, 376–381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Robine (Institut Curie, Centre National de la Recherche Scientifique) for Villin Cre-ERT2 mice; C.J. Tabin (Harvard Medical School) for Dicer1fl/fl mice; P.P. Pandolfi (Harvard Medical School) for Ptenfl/fl mice; K. Rajewsky (Harvard Medical School) for antibody to Dicer; I. Ben-Porath (Hebrew University) for reagents; H. Clevers for IEC-isolation protocols; Y. Smith for assistance in genomic data analysis; M. Leshets and I. Burstain for handling the confocal microscopy; and R. Goldstein for critical review of the manuscript. Supported by the Israel Science Foundation, Israel Cancer Research Fund, Hadassah Medical Center (A.L.), the German-Israeli Foundation, the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation and the Crohn's & Colitis Foundation of America.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and A.L. did experiments, analyzed data, provided ideas and contributed to the writing of the manuscript; M.S. did experiments, analyzed data and contributed ideas; I.A., H.M., F.Z. and E.H. did experiments and analyzed data; G.C. provided bioinformatics assistance; S.K.-R., T.A.-S., M.N.P., D.A., M.D.W. and E.H. provided ideas and experimental reagents; Z.B. and E.H. contributed to preparing the manuscript; and Y.B.-N. and E.P. directed the study, contributed to the writing of the manuscript and supervised the work.

Corresponding authors

Correspondence to Eli Pikarsky or Yinon Ben-Neriah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Tables 1–4 and Supplementary Methods (PDF 1243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biton, M., Levin, A., Slyper, M. et al. Epithelial microRNAs regulate gut mucosal immunity via epithelium–T cell crosstalk. Nat Immunol 12, 239–246 (2011). https://doi.org/10.1038/ni.1994

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1994

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing