Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ TH2 cells

Abstract

Mouse CCL8 is a CC chemokine of the monocyte chemoattractant protein (MCP) family whose biological activity and receptor usage have remained elusive. Here we show that CCL8 is highly expressed in the skin, where it serves as an agonist for the chemokine receptor CCR8 but not for CCR2. This distinguishes CCL8 from all other MCP chemokines. CCL8 responsiveness defined a population of highly differentiated, CCR8-expressing inflammatory T helper type 2 (TH2) cells enriched for interleukin (IL)-5. Ccr8- and Ccl8-deficient mice had markedly less eosinophilic inflammation than wild-type or Ccr4-deficient mice in a model of chronic atopic dermatitis. Adoptive transfer studies established CCR8 as a key regulator of TH2 cell recruitment into allergen-inflamed skin. In humans, CCR8 expression also defined an IL-5–enriched TH2 cell subset. The CCL8-CCR8 chemokine axis is therefore a crucial regulator of TH2 cell homing that drives IL-5–mediated chronic allergic inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mouse CCL8 RNA and protein are detected in normal mouse skin.
Figure 2: Mouse CCL8 induces migration and calcium flux in TH2-R2A cells.
Figure 3: CCR8 is required for mouse CCL8-induced TH2-R2A cell migration.
Figure 4: Mouse CCL8 is a specific agonist of mouse and human CCR8.
Figure 5: Ccr8/ and Ccl8−/−Ccl12−/− mice have decreased skin inflammation in a model of chronic atopic dermatitis.
Figure 6: Ccr8−/− mice have decreased production of IL-5, IL-25 and eosinophil-active chemokines in allergen-sensitized skin.
Figure 7: Competitive in vivo homing of adoptively transferred OVA-specific wild-type and Ccr8−/− TH2 and TH1 cells in OVA-sensitized mice.
Figure 8: Mouse CCL8–responsive TH2-R2A cells are enriched for IL-5, IL-25R, TNF and OX40.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Zlotnik, A., Yoshie, O. & Nomiyama, H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 7, 243 (2006).

    Article  Google Scholar 

  2. Nomiyama, H. et al. Comparative DNA sequence analysis of mouse and human CC chemokine gene clusters. J. Interferon Cytokine Res. 23, 37–45 (2003).

    Article  CAS  Google Scholar 

  3. Bromley, S.K., Mempel, T.R. & Luster, A.D. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat. Immunol. 9, 970–980 (2008).

    Article  CAS  Google Scholar 

  4. Sallusto, F., Mackay, C.R. & Lanzavecchia, A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu. Rev. Immunol. 18, 593–620 (2000).

    Article  CAS  Google Scholar 

  5. Sigmundsdottir, H. & Butcher, E.C. Environmental cues, dendritic cells and the programming of tissue-selective lymphocyte trafficking. Nat. Immunol. 9, 981–987 (2008).

    Article  CAS  Google Scholar 

  6. Ebert, L.M., Meuter, S. & Moser, B. Homing and function of human skin gammadelta T cells and NK cells: relevance for tumor surveillance. J. Immunol. 176, 4331–4336 (2006).

    Article  CAS  Google Scholar 

  7. Schaerli, P. et al. A skin-selective homing mechanism for human immune surveillance T cells. J. Exp. Med. 199, 1265–1275 (2004).

    Article  CAS  Google Scholar 

  8. Gombert, M. et al. CCL1–CCR8 interactions: an axis mediating the recruitment of T cells and Langerhans-type dendritic cells to sites of atopic skin inflammation. J. Immunol. 174, 5082–5091 (2005).

    Article  CAS  Google Scholar 

  9. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458, 351–356 (2009).

    Article  CAS  Google Scholar 

  10. Kremer, L. et al. The transient expression of C–C chemokine receptor 8 in thymus identifies a thymocyte subset committed to become CD4+ single-positive T cells. J. Immunol. 166, 218–225 (2001).

    Article  CAS  Google Scholar 

  11. Hoshino, A. et al. Inhibition of CCL1–CCR8 interaction prevents aggregation of macrophages and development of peritoneal adhesions. J. Immunol. 178, 5296–5304 (2007).

    Article  CAS  Google Scholar 

  12. Qu, C. et al. Role of CCR8 and other chemokine pathways in the migration of monocyte-derived dendritic cells to lymph nodes. J. Exp. Med. 200, 1231–1241 (2004).

    Article  CAS  Google Scholar 

  13. D'Ambrosio, D. et al. Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J. Immunol. 161, 5111–5115 (1998).

    CAS  PubMed  Google Scholar 

  14. Zingoni, A. et al. The chemokine receptor CCR8 is preferentially expressed in Th2 but not Th1 cells. J. Immunol. 161, 547–551 (1998).

    CAS  PubMed  Google Scholar 

  15. Dairaghi, D.J., Fan, R.A., McMaster, B.E., Hanley, M.R. & Schall, T.J. HHV8-encoded vMIP-I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J. Biol. Chem. 274, 21569–21574 (1999).

    Article  CAS  Google Scholar 

  16. Lüttichau, H.R. et al. A highly selective CC chemokine receptor (CCR)8 antagonist encoded by the poxvirus molluscum contagiosum. J. Exp. Med. 191, 171–180 (2000).

    Article  Google Scholar 

  17. Gong, X. et al. Monocyte chemotactic protein-2 (MCP-2) uses CCR1 and CCR2B as its functional receptors. J. Biol. Chem. 272, 11682–11685 (1997).

    Article  CAS  Google Scholar 

  18. Fort, M.M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    Article  CAS  Google Scholar 

  19. Takatsu, K. & Nakajima, H. IL-5 and eosinophilia. Curr. Opin. Immunol. 20, 288–294 (2008).

    Article  CAS  Google Scholar 

  20. Wang, Y.H. et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J. Exp. Med. 204, 1837–1847 (2007).

    Article  CAS  Google Scholar 

  21. Liu, Y.J. et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu. Rev. Immunol. 25, 193–219 (2007).

    Article  CAS  Google Scholar 

  22. Gong, J.H. & Clark-Lewis, I. Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues. J. Exp. Med. 181, 631–640 (1995).

    Article  CAS  Google Scholar 

  23. Spangrude, G.J., Sacchi, F., Hill, H.R., Van Epps, D.E. & Daynes, R.A. Inhibition of lymphocyte and neutrophil chemotaxis by pertussis toxin. J. Immunol. 135, 4135–4143 (1985).

    CAS  PubMed  Google Scholar 

  24. Iellem, A. et al. Inhibition by IL-12 and IFN-alpha of I-309 and macrophage-derived chemokine production upon TCR triggering of human Th1 cells. Eur. J. Immunol. 30, 1030–1039 (2000).

    Article  CAS  Google Scholar 

  25. Jin, H., He, R., Oyoshi, M. & Geha, R.S. Animal models of atopic dermatitis. J. Invest. Dermatol. 129, 31–40 (2009).

    Article  CAS  Google Scholar 

  26. Wang, G. et al. Repeated epicutaneous exposures to ovalbumin progressively induce atopic dermatitis-like skin lesions in mice. Clin. Exp. Allergy 37, 151–161 (2007).

    Article  CAS  Google Scholar 

  27. Ansel, K.M., Djuretic, I., Tanasa, B. & Rao, A. Regulation of Th2 differentiation and Il4 locus accessibility. Annu. Rev. Immunol. 24, 607–656 (2006).

    Article  CAS  Google Scholar 

  28. Inami, M. et al. CD28 costimulation controls histone hyperacetylation of the interleukin 5 gene locus in developing th2 cells. J. Biol. Chem. 279, 23123–23133 (2004).

    Article  CAS  Google Scholar 

  29. Shinnakasu, R. et al. Critical YxKxHxxxRP motif in the C-terminal region of GATA3 for its DNA binding and function. J. Immunol. 177, 5801–5810 (2006).

    Article  CAS  Google Scholar 

  30. Das, J. et al. A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat. Immunol. 2, 45–50 (2001).

    Article  CAS  Google Scholar 

  31. Wei, L. et al. Discrete roles of STAT4 and STAT6 transcription factors in tuning epigenetic modifications and transcription during T helper cell differentiation. Immunity 32, 840–851 (2010).

    Article  CAS  Google Scholar 

  32. Chensue, S.W. et al. Aberrant in vivo T helper type 2 cell response and impaired eosinophil recruitment in CC chemokine receptor 8 knockout mice. J. Exp. Med. 193, 573–584 (2001).

    Article  CAS  Google Scholar 

  33. Goya, I. et al. Absence of CCR8 does not impair the response to ovalbumin-induced allergic airway disease. J. Immunol. 170, 2138–2146 (2003).

    Article  CAS  Google Scholar 

  34. Mikhak, Z. et al. Contribution of CCR4 and CCR8 to antigen-specific TH2 cell trafficking in allergic pulmonary inflammation. J. Allergy Clin. Immunol. 123, 67–73.e3 (2009).

    Article  CAS  Google Scholar 

  35. Gonzalo, J.A. et al. Coordinated involvement of mast cells and T cells in allergic mucosal inflammation: critical role of the CC chemokine ligand 1:CCR8 axis. J. Immunol. 179, 1740–1750 (2007).

    Article  CAS  Google Scholar 

  36. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    Article  CAS  Google Scholar 

  37. Voehringer, D., Reese, T.A., Huang, X., Shinkai, K. & Locksley, R.M. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med. 203, 1435–1446 (2006).

    Article  CAS  Google Scholar 

  38. Jacobsen, E.A. et al. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells. J. Exp. Med. 205, 699–710 (2008).

    Article  CAS  Google Scholar 

  39. Croft, M. Control of immunity by the TNFR-related molecule OX40 (CD134). Annu. Rev. Immunol. 28, 57–78 (2010).

    Article  CAS  Google Scholar 

  40. Van Snick, J., Houssiau, F., Proost, P., Van Damme, J. & Renauld, J.C. I-309/T cell activation gene-3 chemokine protects murine T cell lymphomas against dexamethasone-induced apoptosis. J. Immunol. 157, 2570–2576 (1996).

    CAS  PubMed  Google Scholar 

  41. Bernardini, G. et al. Identification of the CC chemokines TARC and macrophage inflammatory protein-1 beta as novel functional ligands for the CCR8 receptor. Eur. J. Immunol. 28, 582–588 (1998).

    Article  CAS  Google Scholar 

  42. Fox, J.M. et al. Structure/function relationships of CCR8 agonists and antagonists. Amino-terminal extension of CCL1 by a single amino acid generates a partial agonist. J. Biol. Chem. 281, 36652–36661 (2006).

    Article  CAS  Google Scholar 

  43. Drazen, J.M., Arm, J.P. & Austen, K.F. Sorting out the cytokines of asthma. J. Exp. Med. 183, 1–5 (1996).

    Article  CAS  Google Scholar 

  44. Prussin, C., Lee, J. & Foster, B. Eosinophilic gastrointestinal disease and peanut allergy are alternatively associated with IL-5+ and IL-5 TH2 responses. J. Allergy Clin. Immunol. 124, 1326–1332.e6 (2009).

    Article  CAS  Google Scholar 

  45. Tsou, C.L. et al. Critical roles for CCR2 and MCP-3 in monocyte mobilization from bone marrow and recruitment to inflammatory sites. J. Clin. Invest. 117, 902–909 (2007).

    Article  CAS  Google Scholar 

  46. Tager, A.M. et al. Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment. Nat. Immunol. 4, 982–990 (2003).

    Article  CAS  Google Scholar 

  47. Islam, S.A. et al. The leukotriene B4 lipid chemoattractant receptor BLT1 defines antigen-primed T cells in humans. Blood 107, 444–453 (2006).

    Article  CAS  Google Scholar 

  48. Xie, J.F. et al. Selective neutralization of the chemokine TCA3 reduces the increased injury of partial versus whole liver transplants induced by cold preservation. Transplantation 82, 1501–1509 (2006).

    Article  CAS  Google Scholar 

  49. He, R., Oyoshi, M.K., Jin, H. & Geha, R.S. Epicutaneous antigen exposure induces a Th17 response that drives airway inflammation after inhalation challenge. Proc. Natl. Acad. Sci. USA 104, 15817–15822 (2007).

    Article  CAS  Google Scholar 

  50. Mutalithas, K. et al. Expression of CCR8 is increased in asthma. Clin. Exp. Allergy 40, 1175–1185 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded by US National Institutes of Health grants K08-AI556663 and P30AR042689 (Harvard Skin Disease Research Center Pilot & Feasibility Study) to S.A.I. and R37-AI040618 to A.D.L., and the Infectious Diseases Society of America Young Investigator Award to S.A.I. The authors thank P. Murphy (National Institutes of Health) for 4DE4 cells, J. Pease (Imperial College London) for human CCR8 receptor transfectants, P. Shrikant (Roswell Park Cancer Institute) for transgenic Thy1.1 OTII mice, L. Lefrancois (University of Connecticut School of Medicine) for transgenic Thy1.2 OTII mice, C. Sanderson (National Institute for Medical Research, London) for Il5–transgenic mice, S. Thomas for assistance with calcium flux studies and T. Means for assistance with design and validation of QPCR primers.

Author information

Authors and Affiliations

Authors

Contributions

A.D.L. screened the EST database to identify mouse Ccl8, designed the construct to express functional recombinant mouse CCL8 protein, conducted the RNA blot analysis, designed experiments and wrote the paper. D.S.C. did mouse experiments, immunohistochemistry and QPCR of skin RNA preps. R.A.C. helped devise a strategy to clone Ccr8 and helped generate Ccr2 transient transfectants. M.H.B. helped clone Ccr8. M.L.M. and B.M. generated and provided the biotinylated monoclonal antibody to human CCR8. S.A.L. provided the Ccr8−/− mice, and I.F.C. provided the Ccl8−/−Ccl12−/− and Ccl12−/− mice. S.A.I. carried out all other in vitro and in vivo experiments, designed research, analyzed data and wrote the paper.

Corresponding author

Correspondence to Andrew D Luster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Table 1 (PDF 1252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islam, S., Chang, D., Colvin, R. et al. Mouse CCL8, a CCR8 agonist, promotes atopic dermatitis by recruiting IL-5+ TH2 cells. Nat Immunol 12, 167–177 (2011). https://doi.org/10.1038/ni.1984

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing