Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions

Abstract

Activation-induced deaminase (AID) initiates diversity of immunoglobulin genes through deamination of cytosine to uracil. Two opposing models have been proposed for the deamination of DNA or RNA by AID. Although most data support DNA deamination, there is no physical evidence of uracil residues in immunoglobulin genes. Here we demonstrate their presence by determining the sensitivity of DNA to digestion with uracil DNA glycosylase (UNG) and abasic endonuclease. Using several methods of detection, we identified uracil residues in the variable and switch regions. Uracil residues were generated within 24 h of B cell stimulation, were present on both DNA strands and were found to replace mainly cytosine bases. Our data provide direct evidence for the model that AID functions by deaminating cytosine residues in DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for identifying uracil residues in DNA.
Figure 2: Uracil residues in the rearranged Igl allele from UNG-deficient DT40 cells.
Figure 3: Uracil residues in VH and Vκ regions from mouse germinal center B cells.
Figure 4: Uracil residues in the Sμ region after ex vivo stimulation of mouse splenic B cells with LPS and IL-4.
Figure 5: DNA replication decreases the uracil content.
Figure 6: Uracil residues are present on both DNA strands in Sμ after ex vivo stimulation.
Figure 7: Detection of uracil residues by ligation-mediated PCR.
Figure 8: Uracil residues preferentially replace cytosine residues.

Similar content being viewed by others

References

  1. Muramatsu, M. et al. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274, 18470–18476 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Honjo, T., Nagaoka, H., Shinkura, R. & Muramatsu, M. AID to overcome the limitations of genomic information. Nat. Immunol. 6, 655–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Di Noia, J. & Neuberger, M.S. Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43–48 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Rada, C. et al. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 12, 1748–1755 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Imai, K. et al. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat. Immunol. 4, 1023–1028 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Di Noia, J.M. & Neuberger, M.S. Immunoglobulin gene conversion in chicken DT40 cells largely proceeds through an abasic site intermediate generated by excision of the uracil produced by AID-mediated deoxycytidine deamination. Eur. J. Immunol. 34, 504–508 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Kavli, B. et al. B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. J. Exp. Med. 201, 2011–2021 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saribasak, H. et al. Uracil DNA glycosylase disruption blocks Ig gene conversion and induces transition mutations. J. Immunol. 176, 365–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Begum, N.A. et al. Uracil DNA glycosylase activity is dispensable for immunoglobulin class switch. Science 305, 1160–1163 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Begum, N.A. et al. Further evidence for involvement of a noncanonical function of uracil DNA glycosylase in class switch recombination. Proc. Natl. Acad. Sci. USA 106, 2752–2757 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Begum, N.A. et al. Requirement of non-canonical activity of uracil DNA glycosylase for class switch recombination. J. Biol. Chem. 282, 731–742 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Stivers, J.T. Comment on “Uracil DNA glycosylase activity is dispensable for immunoglobulin class switch”. Science 306, 2042 (2004).

    Article  PubMed  Google Scholar 

  13. Di Noia, J.M. et al. Dependence of antibody gene diversification on uracil excision. J. Exp. Med. 204, 3209–3219 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guikema, J.E. et al. APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J. Exp. Med. 204, 3017–3026 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sabouri, Z. et al. Apex2 is required for efficient somatic hypermutation but not for class switch recombination of immunoglobulin genes. Int. Immunol. 21, 947–955 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Petersen-Mahrt, S.K., Harris, R.S. & Neuberger, M.S. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99–103 (2002).

    CAS  PubMed  Google Scholar 

  17. Bransteitter, R., Pham, P., Scharff, M.D. & Goodman, M.F. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA 100, 4102–4107 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dickerson, S.K., Market, E., Besmer, E. & Papavasiliou, F.N. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197, 1291–1296 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harris, R.S., Petersen-Mahrt, S.K. & Neuberger, M.S. RNA editing enzyme APOBEC1 and some of its homologs can act as DNA mutators. Mol. Cell 10, 1247–1253 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Rada, C., Di Noia, J.M. & Neuberger, M.S. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol. Cell 16, 163–171 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Shen, H.M., Tanaka, A., Bozek, G., Nicolae, D. & Storb, U. Somatic hypermutation and class switch recombination in Msh6−/−Ung−/− double-knockout mice. J. Immunol. 177, 5386–5392 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Xue, K., Rada, C. & Neuberger, M.S. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2−/−ung−/− mice. J. Exp. Med. 203, 2085–2094 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Martomo, S.A., Fu, D., Yang, W.W., Joshi, N.S. & Gearhart, P.J. Deoxyuridine is generated preferentially in the nontranscribed strand of DNA from cells expressing activation-induced cytidine deaminase. J. Immunol. 174, 7787–7791 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Slupphaug, G. et al. Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry 34, 128–138 (1995).

    Article  CAS  PubMed  Google Scholar 

  25. Buerstedde, J.M. et al. Light chain gene conversion continues at high rate in an ALV-induced cell line. EMBO J. 9, 921–927 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, S., Humphries, E.H., Tjoelker, L., Carlson, L. & Thompson, C.B. Ongoing diversification of the rearranged immunoglobulin light-chain gene in a bursal lymphoma cell line. Mol. Cell. Biol. 10, 3224–3231 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kohli, R.M. et al. Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J. Biol. Chem. doi:10.1074/jbc.M110.177402 (6 October 2010).

  28. Schrader, C.E., Linehan, E.K., Mochegova, S.N., Woodland, R.T. & Stavnezer, J. Inducible DNA breaks in Ig S regions are dependent on AID and UNG. J. Exp. Med. 202, 561–568 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rajagopal, D. et al. Immunoglobulin switch μ sequence causes RNA polymerase II accumulation and reduces dA hypermutation. J. Exp. Med. 206, 1237–1244 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Andersson, J., Coutinho, A., Lernhardt, W. & Melchers, F. Clonal growth and maturation to immunoglobulin secretion in vitro of every growth-inducible B lymphocyte. Cell 10, 27–34 (1977).

    Article  CAS  PubMed  Google Scholar 

  31. Yu, K., Chedin, F., Hsieh, C.L., Wilson, T.E. & Lieber, M.R. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat. Immunol. 4, 442–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Bransteitter, R., Pham, P., Calabrese, P. & Goodman, M.F. Biochemical analysis of hypermutational targeting by wild type and mutant activation-induced cytidine deaminase. J. Biol. Chem. 279, 51612–51621 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Yu, K., Huang, F.T. & Lieber, M.R. DNA substrate length and surrounding sequence affect the activation-induced deaminase activity at cytidine. J. Biol. Chem. 279, 6496–6500 (2004).

    CAS  PubMed  Google Scholar 

  34. Larijani, M., Frieder, D., Basit, W. & Martin, A. The mutation spectrum of purified AID is similar to the mutability index in Ramos cells and in ung−/−msh2−/− mice. Immunogenetics 56, 840–845 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Rada, C., Ehrenstein, M.R., Neuberger, M.S. & Milstein, C. Hot spot focusing of somatic hypermutation in MSH2-deficient mice suggests two stages of mutational targeting. Immunity 9, 135–141 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Ehrenstein, M.R. & Neuberger, M.S. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J. 18, 3484–3490 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Martomo, S.A., Yang, W.W. & Gearhart, P.J. A role for Msh6 but not Msh3 in somatic hypermutation and class switch recombination. J. Exp. Med. 200, 61–68 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Delbos, F., Aoufouchi, S., Faili, A., Weill, J.C. & Reynaud, C.A. DNA polymerase η is the sole contributor of A/T modifications during immunoglobulin gene hypermutation in the mouse. J. Exp. Med. 204, 17–23 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neuberger, M.S. et al. Somatic hypermutation at A.T pairs: polymerase error versus dUTP incorporation. Nat. Rev. Immunol. 5, 171–178 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Roche, B., Claes, A. & Rougeon, F. Deoxyuridine triphosphate incorporation during somatic hypermutation of mouse VkOx genes after immunization with phenyloxazolone. J. Immunol. 185, 4777–4782 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Sharbeen, G. et al. Incorporation of dUTP does not mediate mutation of A:T base pairs in Ig genes in vivo. Nucleic Acids Res. doi:10.1093/nar/gkq682 (12 August 2010).

  42. Petersen, S. et al. AID is required to initiate Nbs1/γ-H2AX focus formation and mutations at sites of class switching. Nature 414, 660–665 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reina-San-Martin, B. et al. H2AX is required for recombination between immunoglobulin switch regions but not for intra-switch region recombination or somatic hypermutation. J. Exp. Med. 197, 1767–1778 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nilsen, H. et al. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol. Cell 5, 1059–1065 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Chaudhuri, J. et al. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Ramiro, A.R., Stavropoulos, P., Jankovic, M. & Nussenzweig, M.C. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol. 4, 452–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Sohail, A., Klapacz, J., Samaranayake, M., Ullah, A. & Bhagwat, A.S. Human activation-induced cytidine deaminase causes transcription-dependent, strand-biased C to U deaminations. Nucleic Acids Res. 31, 2990–2994 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kunkel, T.A. & Burgers, P.M. Dividing the workload at a eukaryotic replication fork. Trends Cell Biol. 18, 521–527 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shen, H.M. & Storb, U. Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled. Proc. Natl. Acad. Sci. USA 101, 12997–13002 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Huang, F.T. et al. Sequence dependence of chromosomal R-loops at the immunoglobulin heavy-chain Sμ class switch region. Mol. Cell. Biol. 27, 5921–5932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kohli, R.M. et al. A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J. Biol. Chem. 284, 22898–22904 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, M., Rada, C. & Neuberger, M.S. Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID. J Exp Med 207, 141–153, S141–146 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu, M. et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Arakawa, H., Saribasak, H. & Buerstedde, J.M. Activation-induced cytidine deaminase initiates immunoglobulin gene conversion and hypermutation by a common intermediate. PLoS Biol. 2, E179 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Taneyhill, L.A. & Adams, M.S. Investigating regulatory factors and their DNA binding affinities through real time quantitative PCR (RT-QPCR) and chromatin immunoprecipitation (ChIP) assays. Methods Cell Biol. 87, 367–389 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Stivers (John Hopkins University) for UNG; S. Wilson (National Institute of Environmental Health Sciences, National Institutes of Health) for polymerase β-lyase; R. Kohli (University of Pennsylvania), J. Buerstedde and H. Arakawa (Max Planck Institute of Biochemistry) for reagents and advice; S. Fugmann and R. Sen for discussions; T. Wolf, C. Nguyen and R. Wersto for assistance in flow cytometry; and the Comparative Medicine Section for mouse maintenance. Supported by the National Institute on Aging and the National Institute of Child Health and Human Development of the National Institutes of Health (Intramural Research Program) and Howard Hughes Medical Institute (D.G.S.).

Author information

Authors and Affiliations

Authors

Contributions

R.W.M., H.S., S.A.M. and P.J.G. designed the study; R.W.M., H.S., R.L.M., W.Y., A.V. and H.S.G. did experiments; D.G.S., R.W. and D.M.W. provided reagents and suggestions; and R.W.M. and P.J.G. wrote the manuscript.

Corresponding author

Correspondence to Patricia J Gearhart.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1 and Supplementary Methods (PDF 318 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maul, R., Saribasak, H., Martomo, S. et al. Uracil residues dependent on the deaminase AID in immunoglobulin gene variable and switch regions. Nat Immunol 12, 70–76 (2011). https://doi.org/10.1038/ni.1970

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1970

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing