Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses

This article has been updated

Abstract

The poly(ADP-ribose) polymerases (PARPs) participate in many biological and pathological processes. Here we report that the PARP-13 shorter isoform (ZAPS), rather than the full-length protein (ZAP), was selectively induced by 5′-triphosphate–modified RNA (3pRNA) and functioned as a potent stimulator of interferon responses in human cells mediated by the RNA helicase RIG-I. ZAPS associated with RIG-I to promote the oligomerization and ATPase activity of RIG-I, which led to robust activation of IRF3 and NF-κB transcription factors. Disruption of the gene encoding ZAPS resulted in impaired induction of interferon-α (IFN-α), IFN-β and other cytokines after viral infection. These results indicate that ZAPS is a key regulator of RIG-I signaling during the innate antiviral immune response, which suggests its possible use as a therapeutic target for viral control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Involvement of PARP-superfamily members in interferon responses to cytosolic nucleic acids.
Figure 2: ZAPS is a potent stimulator of RIG-I-mediated type I interferon responses activated by 3pRNA.
Figure 3: ZAPS activates both the NF-κB and IRF3 transcriptional pathways in a RIG-I- and MAVS-dependent manner.
Figure 4: ZAPS interacts with RIG-I to positively modulate the RIG-I activity.
Figure 5: ZAPS is a key regulator of RIG-I-mediated induction of type I interferons and antiviral innate defense.
Figure 6: Crucial role for ZAPS in the induction of cytokine genes by NDV infection.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Change history

  • 08 December 2010

    In the version of this article initially published online, the affiliation of F. Kashigi, S. Goto and S. Kameoka with the Department of Chemistry, Graduate School of Science, Hokkaido University Sapporo, Japan, was omitted. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  Google Scholar 

  2. Takaoka, A. & Taniguchi, T. Cytosolic DNA recognition for triggering innate immune responses. Adv. Drug Deliv. Rev. 60, 847–857 (2008).

    Article  CAS  Google Scholar 

  3. Katze, M., Fornek, J., Palermo, R., Walters, K. & Korth, M. Innate immune modulation by RNA viruses: emerging insights from functional genomics. Nat. Rev. Immunol. 8, 644–654 (2008).

    Article  CAS  Google Scholar 

  4. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    Article  CAS  Google Scholar 

  5. Yoneyama, M. et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175, 2851–2858 (2005).

    Article  CAS  Google Scholar 

  6. Yoneyama, M. & Fujita, T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 227, 54–65 (2009).

    Article  CAS  Google Scholar 

  7. Takeuchi, O. & Akira, S. Innate immunity to virus infection. Immunol. Rev. 227, 75–86 (2009).

    Article  CAS  Google Scholar 

  8. Rehwinkel, J. & Reis e Sousa, C. RIGorous detection: exposing virus through RNA sensing. Science 327, 284–286 (2010).

    Article  CAS  Google Scholar 

  9. Hornung, V. et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science 314, 994–997 (2006).

    Article  Google Scholar 

  10. Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    Article  CAS  Google Scholar 

  11. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6, 981–988 (2005).

    Article  CAS  Google Scholar 

  12. Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005).

    Article  CAS  Google Scholar 

  13. Seth, R.B., Sun, L., Ea, C.K. & Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122, 669–682 (2005).

    Article  CAS  Google Scholar 

  14. Xu, L. et al. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19, 727–740 (2005).

    Article  CAS  Google Scholar 

  15. Nakhaei, P., Genin, P., Civas, A. & Hiscott, J. RIG-I-like receptors: sensing and responding to RNA virus infection. Semin. Immunol. 21, 215–222 (2009).

    Article  CAS  Google Scholar 

  16. Zeng, W. et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141, 315–330 (2010).

    Article  CAS  Google Scholar 

  17. Gack, M. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007).

    Article  CAS  Google Scholar 

  18. Cui, J. et al. NLRC5 negatively regulates the NF-κB and type I interferon signaling pathways. Cell 141, 483–496 (2010).

    Article  CAS  Google Scholar 

  19. Hakme, A., Wong, H.K., Dantzer, F. & Schreiber, V. The expanding field of poly(ADP-ribosyl)ation reactions. 'Protein Modifications: Beyond the Usual Suspects' Review Series. EMBO Rep. 9, 1094–1100 (2008).

    Article  CAS  Google Scholar 

  20. Gao, G., Guo, X. & Goff, S.P. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297, 1703–1706 (2002).

    Article  CAS  Google Scholar 

  21. Hassa, P.O. & Hottiger, M.O. The diverse biological roles of mammalian PARPS, a small but powerful family of poly-ADP-ribose polymerases. Front. Biosci. 13, 3046–3082 (2008).

    Article  CAS  Google Scholar 

  22. Schreiber, V., Dantzer, F., Ame, J.C. & de Murcia, G. Poly(ADP-ribose): novel functions for an old molecule. Nat. Rev. Mol. Cell Biol. 7, 517–528 (2006).

    Article  CAS  Google Scholar 

  23. Tempera, I. et al. Regulation of Epstein-Barr virus OriP replication by poly(ADP-ribose) polymerase 1. J. Virol. 84, 4988–4997 (2010).

    Article  CAS  Google Scholar 

  24. Ohsaki, E. et al. Poly(ADP-ribose) polymerase 1 binds to Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeat sequence and modulates KSHV replication in latency. J. Virol. 78, 9936–9946 (2004).

    Article  CAS  Google Scholar 

  25. Chen, G., Guo, X., Lv, F., Xu, Y. & Gao, G. p72 DEAD box RNA helicase is required for optimal function of the zinc-finger antiviral protein. Proc. Natl. Acad. Sci. USA 105, 4352–4357 (2008).

    Article  CAS  Google Scholar 

  26. Zhu, Y. & Gao, G. ZAP-mediated mRNA degradation. RNA Biol. 5, 65–67 (2008).

    Article  CAS  Google Scholar 

  27. Hassa, P., Buerki, C., Lombardi, C., Imhof, R. & Hottiger, M. Transcriptional coactivation of nuclear factor-κB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1. J. Biol. Chem. 278, 45145–45153 (2003).

    Article  CAS  Google Scholar 

  28. Oliver, F. et al. Resistance to endotoxic shock as a consequence of defective NF-κB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J. 18, 4446–4454 (1999).

    Article  CAS  Google Scholar 

  29. Aguiar, R., Takeyama, K., He, C., Kreinbrink, K. & Shipp, M. B-aggressive lymphoma family proteins have unique domains that modulate transcription and exhibit poly(ADP-ribose) polymerase activity. J. Biol. Chem. 280, 33756–33765 (2005).

    Article  CAS  Google Scholar 

  30. Juszczynski, P. et al. BAL1 and BBAP are regulated by a γ interferon-responsive bidirectional promoter and are overexpressed in diffuse large B-cell lymphomas with a prominent inflammatory infiltrate. Mol. Cell. Biol. 26, 5348–5359 (2006).

    Article  CAS  Google Scholar 

  31. Yelamos, J. et al. PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes. EMBO J. 25, 4350–4360 (2006).

    Article  CAS  Google Scholar 

  32. Kofler, J. et al. Differential effect of PARP-2 deletion on brain injury after focal and global cerebral ischemia. J. Cereb. Blood Flow Metab. 26, 135–141 (2006).

    Article  CAS  Google Scholar 

  33. Ma, Q., Baldwin, K.T., Renzelli, A.J., McDaniel, A. & Dong, L. TCDD-inducible poly(ADP-ribose) polymerase: a novel response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem. Biophys. Res. Commun. 289, 499–506 (2001).

    Article  CAS  Google Scholar 

  34. Kutsch, S., Degrandi, D. & Pfeffer, K. Immediate lymphotoxin β receptor-mediated transcriptional response in host defense against L. monocytogenes. Immunobiology 213, 353–366 (2008).

    Article  CAS  Google Scholar 

  35. Kato, H. et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J. Exp. Med. 205, 1601–1610 (2008).

    Article  CAS  Google Scholar 

  36. Chiu, Y.H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    Article  CAS  Google Scholar 

  37. Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009).

    Article  CAS  Google Scholar 

  38. Kerns, J.A., Emerman, M. & Malik, H.S. Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genet. 4, e21 (2008).

    Article  Google Scholar 

  39. Guo, X., Carroll, J.W., Macdonald, M.R., Goff, S.P. & Gao, G. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J. Virol. 78, 12781–12787 (2004).

    Article  CAS  Google Scholar 

  40. Wang, N. et al. Viral induction of the zinc finger antiviral protein is IRF3-dependent but NF-κB-independent. J. Biol. Chem. 285, 6080–6090 (2010).

    Article  CAS  Google Scholar 

  41. Bowzard, J.B., Ranjan, P., Sambhara, S. & Fujita, T. Antiviral defense: RIG-Ing the immune system to STING. Cytokine Growth Factor Rev. 20, 1–5 (2009).

    Article  CAS  Google Scholar 

  42. Saito, T. et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc. Natl. Acad. Sci. USA 104, 582–587 (2007).

    Article  CAS  Google Scholar 

  43. Cui, S. et al. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol. Cell 29, 169–179 (2008).

    Article  CAS  Google Scholar 

  44. Schmidt, A. et al. 5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc. Natl. Acad. Sci. USA 106, 12067–12072 (2009).

    Article  CAS  Google Scholar 

  45. Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    Article  CAS  Google Scholar 

  46. Urnov, F. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  Google Scholar 

  47. Foley, J. et al. Targeted mutagenesis in zebrafish using customized zinc-finger nucleases. Nat. Protocols 4, 1855–1867 (2009).

    Article  CAS  Google Scholar 

  48. Lee, H., Kim, E. & Kim, J. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 20, 81–89 (2010).

    Article  CAS  Google Scholar 

  49. Yuan, W. & Krug, R. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 20, 362–371 (2001).

    Article  CAS  Google Scholar 

  50. Arimoto, K. et al. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc. Natl. Acad. Sci. USA 104, 7500–7505 (2007).

    Article  CAS  Google Scholar 

  51. Friedman, C. et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep. 9, 930–936 (2008).

    Article  CAS  Google Scholar 

  52. Oshiumi, H., Matsumoto, M., Hatakeyama, S. & Seya, T. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J. Biol. Chem. 284, 807–817 (2009).

    Article  CAS  Google Scholar 

  53. Saito, T., Owen, D.M., Jiang, F., Marcotrigiano, J. & Gale, M. Jr. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454, 523–527 (2008).

    Article  CAS  Google Scholar 

  54. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    Article  CAS  Google Scholar 

  55. Takahasi, K. et al. Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors. J. Biol. Chem. 284, 17465–17474 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Fujita (Kyoto University) for the luciferase reporter plasmids p-55C1BLuc and p-125Luc; J. Miyazaki (Osaka University) for the pCAGGS vector; A. Miyawaki (RIKEN) for the Venus vector; H. Kida (Hokkaido University) for NDV; A. Iwai, H. Higashi and J. Hamada for technical help; M. Yamane for the purification of human primary CD14+ monocytes; and S. Tamura and T. Moriyama for advice on recombinant protein purification. Supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant-in-Aid for Young Scientists (A) to S.H., Young Scientists (S) to A.T.) and Scientific Research in Priority Areas (A.T.), IRYO HOJIN SHADAN JIKOKAI (H. Tanaka & N. Takayanagi) (A.T.), the Astellas Foundation for Research on Metabolic Disorders (A.T.), the Kanae Foundation for the Promotion of Medical Science (A.T.), the Kato Memorial Bioscience Foundation (A.T.) and the Yasuda Medical Foundation (A.T.).

Author information

Authors and Affiliations

Authors

Contributions

S.H., S.S., H.Y., T.K., C.K., F.K., S.G., S.K., T.Y., M.K., M.S., J.T., M.A. and M.I. planned studies, did experiments and analyzed data; D.F. and T. Miyazaki contributed to viral infection experiments and helped with data analyses; T. Mizutani and Y.O. did fluorescence microscopy experiments and FRET analysis; and A.T. supervised the project, designed experiments and wrote the manuscript with comments from the coauthors.

Corresponding author

Correspondence to Akinori Takaoka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Tables 1–2 (PDF 591 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayakawa, S., Shiratori, S., Yamato, H. et al. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat Immunol 12, 37–44 (2011). https://doi.org/10.1038/ni.1963

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1963

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing