Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-12 initiates tumor rejection via lymphoid tissue–inducer cells bearing the natural cytotoxicity receptor NKp46

Abstract

The potent tumoricidal activity of interleukin 12 (IL-12) is thought to be mediated by the activation and polarization of natural killer (NK) cells and T helper type 1 (TH1) cells, respectively. By systematic analysis of the IL-12-induced immune response to subcutaneous melanoma (B16), we found that tumor suppression was mediated independently of T lymphocytes or NK cells. IL-12 initiated local antitumor immunity by stimulating a subset of NKp46+ lymphoid tissue–inducer (LTi) cells dependent on the transcription factor RORγt. The presence of these NKp46+ LTi cells induced upregulation of adhesion molecules in the tumor vasculature and resulted in more leukocyte invasion. Thus, this innate cell type is responsive to IL-12 and is a powerful mediator of tumor suppression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-12 acts locally in a paracrine manner.
Figure 2: IL-12 elicits the recruitment of leukocytes into the tumor mass.
Figure 3: IL-12-mediated repression of subcutaneous tumor acts independently of T cells, B cells, NKT cells and cNK cells.
Figure 4: Adoptive transfer of leukocytes bearing IL-12R reestablishes tumor suppression in IL12rb2−/− mice.
Figure 5: IL-12 induces the invasion of NKp46+ cells into the tumor mass.
Figure 6: NKp46+ LTi cells suppress tumor growth in an IL-12R- and RORγt-dependent way.
Figure 7: The role of effector cytokines in IL-12-mediated tumor suppression.
Figure 8: LTi cells alter the tumor microvasculature.

Similar content being viewed by others

References

  1. Dunn, G.P., Koebel, C.M. & Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848 (2006).

    Article  CAS  Google Scholar 

  2. Kinlen, L.J., Sheil, A.G., Peto, J. & Doll, R. Collaborative United Kingdom-Australasian study of cancer in patients treated with immunosuppressive drugs. BMJ 2, 1461–1466 (1979).

    Article  CAS  Google Scholar 

  3. Buell, J.F., Gross, T.G. & Woodle, E.S. Malignancy after transplantation. Transplantation 80, S254–S264 (2005).

    Article  Google Scholar 

  4. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    Article  CAS  Google Scholar 

  5. Dunn, G.P., Old, L.J. & Schreiber, R.D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    Article  CAS  Google Scholar 

  6. Zitvogel, L., Tesniere, A. & Kroemer, G. Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat. Rev. Immunol. 6, 715–727 (2006).

    Article  CAS  Google Scholar 

  7. Schoenhaut, D.S. et al. Cloning and expression of murine IL-12. J. Immunol. 148, 3433–3440 (1992).

    CAS  PubMed  Google Scholar 

  8. Trinchieri, G. & Sher, A. Cooperation of Toll-like receptor signals in innate immune defence. Nat. Rev. Immunol. 7, 179–190 (2007).

    Article  CAS  Google Scholar 

  9. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003).

    Article  CAS  Google Scholar 

  10. Nishimura, T. et al. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J. Exp. Med. 190, 617–627 (1999).

    Article  CAS  Google Scholar 

  11. Nastala, C.L. et al. Recombinant IL-12 administration induces tumor regression in association with IFN-γ production. J. Immunol. 153, 1697–1706 (1994).

    CAS  PubMed  Google Scholar 

  12. Tahara, H. et al. Fibroblasts genetically engineered to secrete interleukin 12 can suppress tumor growth and induce antitumor immunity to a murine melanoma in vivo. Cancer Res. 54, 182–189 (1994).

    CAS  PubMed  Google Scholar 

  13. Noguchi, Y., Jungbluth, A., Richards, E.C. & Old, L.J. Effect of interleukin 12 on tumor induction by 3-methylcholanthrene. Proc. Natl. Acad. Sci. USA 93, 11798–11801 (1996).

    Article  CAS  Google Scholar 

  14. Del Vecchio, M. et al. Interleukin-12: biological properties and clinical application. Clin. Cancer Res. 13, 4677–4685 (2007).

    Article  CAS  Google Scholar 

  15. Langowski, J.L. et al. IL-23 promotes tumour incidence and growth. Nature 442, 461–465 (2006).

    Article  CAS  Google Scholar 

  16. Brunda, M.J. et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J. Exp. Med. 178, 1223–1230 (1993).

    Article  CAS  Google Scholar 

  17. Smyth, M.J., Taniguchi, M. & Street, S.E. The anti-tumor activity of IL-12: mechanisms of innate immunity that are model and dose dependent. J. Immunol. 165, 2665–2670 (2000).

    Article  CAS  Google Scholar 

  18. Smyth, M.J. et al. Differential tumor surveillance by natural killer (NK) and NKT cells. J. Exp. Med. 191, 661–668 (2000).

    Article  CAS  Google Scholar 

  19. Smyth, M.J., Hayakawa, Y., Takeda, K. & Yagita, H. New aspects of natural-killer-cell surveillance and therapy of cancer. Nat. Rev. Cancer 2, 850–861 (2002).

    Article  CAS  Google Scholar 

  20. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  Google Scholar 

  21. Kodama, T. et al. Perforin-dependent NK cell cytotoxicity is sufficient for anti-metastatic effect of IL-12. Eur. J. Immunol. 29, 1390–1396 (1999).

    Article  CAS  Google Scholar 

  22. Park, S.H., Kyin, T., Bendelac, A. & Carnaud, C. The contribution of NKT cells, NK cells, and other γ-chain-dependent non-T non-B cells to IL-12-mediated rejection of tumors. J. Immunol. 170, 1197–1201 (2003).

    Article  CAS  Google Scholar 

  23. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    Article  CAS  Google Scholar 

  24. Sanos, S.L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009).

    Article  CAS  Google Scholar 

  25. Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10, 75–82 (2009).

    Article  CAS  Google Scholar 

  26. Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+CD127+ natural killer-like cells. Nat. Immunol. 10, 66–74 (2009).

    Article  CAS  Google Scholar 

  27. Vivier, E., Spits, H. & Cupedo, T. Interleukin-22-producing innate immune cells: new players in mucosal immunity and tissue repair? Nat. Rev. Immunol. 9, 229–234 (2009).

    Article  CAS  Google Scholar 

  28. Belladonna, M.L. et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J. Immunol. 168, 5448–5454 (2002).

    Article  CAS  Google Scholar 

  29. Schmidt, S.R. Fusion-proteins as biopharmaceuticals–applications and challenges. Curr. Opin. Drug Discov. Dev. 12, 284–295 (2009).

    CAS  Google Scholar 

  30. Vosshenrich, C.A. et al. Roles for common cytokine receptor γ-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J. Immunol. 174, 1213–1221 (2005).

    Article  CAS  Google Scholar 

  31. Beadling, C. & Slifka, M.K. Regulation of innate and adaptive immune responses by the related cytokines IL-12, IL-23, and IL-27. Arch. Immunol. Ther. Exp. (Warsz.) 54, 15–24 (2006).

    Article  CAS  Google Scholar 

  32. Kim, M.Y. et al. OX40 ligand and CD30 ligand are expressed on adult but not neonatal CD4+CD3 inducer cells: evidence that IL-7 signals regulate CD30 ligand but not OX40 ligand expression. J. Immunol. 174, 6686–6691 (2005).

    Article  CAS  Google Scholar 

  33. Walzer, T. et al. Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc. Natl. Acad. Sci. USA 104, 3384–3389 (2007).

    Article  CAS  Google Scholar 

  34. Satoh-Takayama, N. et al. IL-7 and IL-15 independently program the differentiation of intestinal CD3NKp46+ cell subsets from Id2-dependent precursors. J. Exp. Med. 207, 273–280 (2009).

    Article  Google Scholar 

  35. Crellin, N.K., Trifari, S., Kaplan, C.D., Cupedo, T. & Spits, H. Human NKp44+IL-22+ cells and LTi-like cells constitute a stable RORC+ lineage distinct from conventional natural killer cells. J. Exp. Med. 207, 281–290 (2010).

    Article  CAS  Google Scholar 

  36. Mebius, R.E. Organogenesis of lymphoid tissues. Nat. Rev. Immunol. 3, 292–303 (2003).

    Article  CAS  Google Scholar 

  37. Eberl, G. et al. An essential function for the nuclear receptor RORγ(t) in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).

    Article  CAS  Google Scholar 

  38. Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206, 35–41 (2009).

    Article  CAS  Google Scholar 

  39. Schmutz, S. et al. Cutting edge: IL-7 regulates the peripheral pool of adult RORγ+ lymphoid tissue inducer cells. J. Immunol. 183, 2217–2221 (2009).

    Article  CAS  Google Scholar 

  40. Ryschich, E., Schmidt, J., Hammerling, G.J., Klar, E. & Ganss, R. Transformation of the microvascular system during multistage tumorigenesis. Int. J. Cancer 97, 719–725 (2002).

    Article  CAS  Google Scholar 

  41. Buckanovich, R.J. et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat. Med. 14, 28–36 (2008).

    Article  CAS  Google Scholar 

  42. Lugade, A.A. et al. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J. Immunol. 174, 7516–7523 (2005).

    Article  CAS  Google Scholar 

  43. Quezada, S.A. et al. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J. Exp. Med. 205, 2125–2138 (2008).

    Article  CAS  Google Scholar 

  44. Schrama, D. et al. Targeting of lymphotoxin-α to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14, 111–121 (2001).

    Article  CAS  Google Scholar 

  45. Sun, J.C., Ma, A. & Lanier, L.L. Cutting edge: IL-15-independent NK cell response to mouse cytomegalovirus infection. J. Immunol. 183, 2911–2914 (2009).

    Article  CAS  Google Scholar 

  46. Shields, J.D., Kourtis, I.C., Tomei, A.A., Roberts, J.M. & Swartz, M.A. Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science 328, 749–752 (2010).

    Article  CAS  Google Scholar 

  47. Marshall, E. Sciencescope. Science 268, 1555 (1995).

    Article  Google Scholar 

  48. Daud, A.I. et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J. Clin. Oncol. 26, 5896–5903 (2008).

    Article  CAS  Google Scholar 

  49. Peggs, K.S., Quezada, S.A., Chambers, C.A., Korman, A.J. & Allison, J.P. Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies. J. Exp. Med. 206, 1717–1725 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Bulfone-Paus (Research Center Borstel) for Il15ra−/− mice; A. Diefenbach (University Hospital Freiburg) for Rorc-eYFP mice; Y. Iwakura (University of Tokyo) for Il17a−/− mice; J.C. Renauld (Ludwig Institute Brussels) for Il22−/− mice; R. Zinkernagel (University Hospital of Zurich) for anti-CD4 and anti-CD8; M. Kopf and A. Diefenbach for discussions; and V. Tosevski, S. Burkhard, B. Sobotka, V. Wortmann and S. Behnke for technical assistance. Supported by the Swiss National Science Foundation (B.B.), the Swiss Cancer League (B.B.), the Center for Neurosciences Zurich (M.E.) and the Marie Heim-Vögtlin Programme (E.S.).

Author information

Authors and Affiliations

Authors

Contributions

M.E. and E.S. designed and did the experiments and analyzed the data; J.v.B. did experiments and analyzed the histology; G.K. provided advice for the histological analysis; B.B. designed the experiments, supervised and funded the study; B.B. and M.E. wrote the report.

Corresponding author

Correspondence to Burkhard Becher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 391 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenring, M., vom Berg, J., Kristiansen, G. et al. IL-12 initiates tumor rejection via lymphoid tissue–inducer cells bearing the natural cytotoxicity receptor NKp46. Nat Immunol 11, 1030–1038 (2010). https://doi.org/10.1038/ni.1947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing