Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A

Abstract

Neutrophils are the main effector cells during inflammation, but they can also control excessive inflammatory responses by secreting anti-inflammatory cytokines. However, the mechanisms that modulate their plasticity remain unclear. We now show that systemic serum amyloid A 1 (SAA-1) controls the plasticity of neutrophil differentiation. SAA-1 not only induced anti-inflammatory interleukin 10 (IL-10)-secreting neutrophils but also promoted the interaction of invariant natural killer T cells (iNKT cells) with those neutrophils, a process that limited their suppressive activity by diminishing the production of IL-10 and enhancing the production of IL-12. Because SAA-1-producing melanomas promoted differentiation of IL-10-secreting neutrophils, harnessing iNKT cells could be useful therapeutically by decreasing the frequency of immunosuppressive neutrophils and restoring tumor-specific immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proliferation of immunosuppressive CD11b+CD15+ cells in patients with melanoma.
Figure 2: SAA-1 is present in plasma and primary tumors of patients with melanoma.
Figure 3: SAA-1 induces IL-10 production from human neutrophils.
Figure 4: Treatment of human neutrophils with SAA-1 promotes crosstalk with iNKT cells.
Figure 5: Population expansion of immunosuppressive IL-10-secreting neutrophils in Jα18−/− mice injected with SAA-1.
Figure 6: Population expansion of immunosuppressive IL-10-secreting Cd1d−/− neutrophils in SAA-1-injected Cd1d+/+Cd1d−/− mixed–bone marrow chimeras.

Similar content being viewed by others

References

  1. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    Article  CAS  Google Scholar 

  2. Martinez, F.O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol. 27, 451–483 (2009).

    Article  CAS  Google Scholar 

  3. Gabrilovich, D.I. et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 67, 425 (2007).

    Article  CAS  Google Scholar 

  4. Youn, J.I., Nagaraj, S., Collazo, M. & Gabrilovich, D.I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791–5802 (2008).

    Article  CAS  Google Scholar 

  5. De Santo, C. et al. Nitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccination. Proc. Natl. Acad. Sci. USA 102, 4185–4190 (2005).

    Article  CAS  Google Scholar 

  6. Fridlender, Z.G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  Google Scholar 

  7. Zhang, X., Majlessi, L., Deriaud, E., Leclerc, C. & Lo-Man, R. Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity 31, 761–771 (2009).

    Article  CAS  Google Scholar 

  8. Cross, A., Edwards, S.W., Bucknall, R.C. & Moots, R.J. Secretion of oncostatin M by neutrophils in rheumatoid arthritis. Arthritis Rheum. 50, 1430–1436 (2004).

    Article  CAS  Google Scholar 

  9. Urieli-Shoval, S., Linke, R.P. & Matzner, Y. Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr. Opin. Hematol. 7, 64–69 (2000).

    Article  CAS  Google Scholar 

  10. Jacobs, D.M. & Morrison, D.C. Inhibition of the mitogenic response to lipopolysaccharide (LPS) in mouse spleen cells by polymyxin B. J. Immunol. 118, 21–27 (1977).

    CAS  PubMed  Google Scholar 

  11. He, R.L. et al. Serum amyloid A induces G-CSF expression and neutrophilia via Toll-like receptor 2. Blood 113, 429–437 (2009).

    Article  CAS  Google Scholar 

  12. Dufton, N. et al. Anti-inflammatory role of the murine formyl-peptide receptor 2: ligand-specific effects on leukocyte responses and experimental inflammation. J. Immunol. 184, 2611–2619 (2010).

    Article  CAS  Google Scholar 

  13. Ye, R.D. et al. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol. Rev. 61, 119–161 (2009).

    Article  CAS  Google Scholar 

  14. Cheng, N., He, R., Tian, J., Ye, P.P. & Ye, R.D. Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A. J. Immunol. 181, 22–26 (2008).

    Article  CAS  Google Scholar 

  15. He, R., Sang, H. & Ye, R.D. Serum amyloid A induces IL-8 secretion through a G protein-coupled receptor, FPRL1/LXA4R. Blood 101, 1572–1581 (2003).

    Article  CAS  Google Scholar 

  16. He, R., Shepard, L.W., Chen, J., Pan, Z.K. & Ye, R.D. Serum amyloid A is an endogenous ligand that differentially induces IL-12 and IL-23. J. Immunol. 177, 4072–4079 (2006).

    Article  CAS  Google Scholar 

  17. Sander, L.E. et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J. Exp. Med. 207, 1453–1464 (2010).

    Article  CAS  Google Scholar 

  18. De Santo, C. et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J. Clin. Invest. 118, 4036–4048 (2008).

    Article  CAS  Google Scholar 

  19. Brigl, M., Bry, L., Kent, S.C., Gumperz, J.E. & Brenner, M.B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4, 1230–1237 (2003).

    Article  CAS  Google Scholar 

  20. Salio, M. et al. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc. Natl. Acad. Sci. USA 104, 20490–20495 (2007).

    Article  CAS  Google Scholar 

  21. Paget, C. et al. Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27, 597–609 (2007).

    Article  CAS  Google Scholar 

  22. Godfrey, D.I. & Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004).

    Article  CAS  Google Scholar 

  23. Salio, M. & Cerundolo, V. Linking inflammation to natural killer T cell activation. PLoS Biol. 7, e1000226 (2009).

    Article  Google Scholar 

  24. Hermans, I.F. et al. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J. Immunol. 171, 5140–5147 (2003).

    Article  CAS  Google Scholar 

  25. Silk, J.D. et al. Utilizing the adjuvant properties of CD1d-dependent NK T cells in T cell-mediated immunotherapy. J. Clin. Invest. 114, 1800–1811 (2004).

    Article  CAS  Google Scholar 

  26. Galli, G. et al. Invariant NKT cells sustain specific B cell responses and memory. Proc. Natl. Acad. Sci. USA 104, 3984–3989 (2007).

    Article  CAS  Google Scholar 

  27. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  Google Scholar 

  28. Raghuraman, G., Geng, Y. & Wang, C.R. IFN-β-mediated up-regulation of CD1d in bacteria-infected APCs. J. Immunol. 177, 7841–7848 (2006).

    Article  CAS  Google Scholar 

  29. Skold, M., Xiong, X., Illarionov, P.A., Besra, G.S. & Behar, S.M. Interplay of cytokines and microbial signals in regulation of CD1d expression and NKT cell activation. J. Immunol. 175, 3584–3593 (2005).

    Article  Google Scholar 

  30. Morris, E.S. et al. Induction of natural killer T cell-dependent alloreactivity by administration of granulocyte colony-stimulating factor after bone marrow transplantation. Nat. Med. 15, 436–441 (2009).

    Article  CAS  Google Scholar 

  31. Fox, L.M. et al. Recognition of lyso-phospholipids by human natural killer T lymphocytes. PLoS Biol. 7, e1000228 (2009).

    Article  Google Scholar 

  32. Matsuda, J.L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  Google Scholar 

  33. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  Google Scholar 

  34. Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J. & Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231–237 (2004).

    Article  CAS  Google Scholar 

  35. Benlagha, K., Kyin, T., Beavis, A., Teyton, L. & Bendelac, A. A thymic precursor to the NK T cell lineage. Science 296, 553–555 (2002).

    Article  CAS  Google Scholar 

  36. Pellicci, D.G. et al. A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1CD4+ CD1d-dependent precursor stage. J. Exp. Med. 195, 835–844 (2002).

    Article  CAS  Google Scholar 

  37. Crowe, N.Y. et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J. Exp. Med. 202, 1279–1288 (2005).

    Article  CAS  Google Scholar 

  38. Coquet, J.M. et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4–NK1.1- NKT cell population. Proc. Natl. Acad. Sci. USA 105, 11287–11292 (2008).

    Article  CAS  Google Scholar 

  39. Michel, M.L. et al. Identification of an IL-17-producing NK1.1 iNKT cell population involved in airway neutrophilia. J. Exp. Med. 204, 995–1001 (2007).

    Article  CAS  Google Scholar 

  40. Doisne, J.M. et al. Skin and peripheral lymph node invariant NKT cells are mainly retinoic acid receptor-related orphan receptor γt+ and respond preferentially under inflammatory conditions. J. Immunol. 183, 2142–2149 (2009).

    Article  CAS  Google Scholar 

  41. Iwakura, Y. & Ishigame, H. The IL-23/IL-17 axis in inflammation. J. Clin. Invest. 116, 1218–1222 (2006).

    Article  CAS  Google Scholar 

  42. Michel, M.L. et al. Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc. Natl. Acad. Sci. USA 105, 19845–19850 (2008).

    Article  CAS  Google Scholar 

  43. Rachitskaya, A.V. et al. Cutting edge: NKT cells constitutively express IL-23 receptor and RORγt and rapidly produce IL-17 upon receptor ligation in an IL-6-independent fashion. J. Immunol. 180, 5167–5171 (2008).

    Article  CAS  Google Scholar 

  44. Tahir, S.M. et al. Loss of IFN-γ production by invariant NK T cells in advanced cancer. J. Immunol. 167, 4046–4050 (2001).

    Article  CAS  Google Scholar 

  45. Dhodapkar, M.V. et al. A reversible defect in natural killer T cell function characterizes the progression of premalignant to malignant multiple myeloma. J. Exp. Med. 197, 1667–1676 (2003).

    Article  CAS  Google Scholar 

  46. Molling, J.W. et al. Peripheral blood IFN-γ-secreting Vα24+Vβ11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int. J. Cancer 116, 87–93 (2005).

    Article  CAS  Google Scholar 

  47. van der Vliet, H.J. et al. Circulating myeloid dendritic cells of advanced cancer patients result in reduced activation and a biased cytokine profile in invariant NKT cells. J. Immunol. 180, 7287–7293 (2008).

    Article  CAS  Google Scholar 

  48. Queen, M.M., Ryan, R.E., Holzer, R.G., Keller-Peck, C.R. & Jorcyk, C.L. Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res. 65, 8896–8904 (2005).

    Article  CAS  Google Scholar 

  49. Wislez, M. et al. Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Res. 63, 1405–1412 (2003).

    CAS  PubMed  Google Scholar 

  50. Rodriguez, P.C. et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res. 69, 1553–1560 (2009).

    Article  CAS  Google Scholar 

  51. Findeisen, P. et al. Serum amyloid A as a prognostic marker in melanoma identified by proteomic profiling. J. Clin. Oncol. 27, 2199–2208 (2009).

    Article  CAS  Google Scholar 

  52. Paret, C., Schon, Z., Szponar, A. & Kovacs, G. Inflammatory protein serum amyloid A1 marks a subset of conventional renal cell carcinomas with fatal outcome. Eur. Urol. 57, 859–866 (2009).

    Article  Google Scholar 

  53. Hiratsuka, S. et al. The S100A8-serum amyloid A3–TLR4 paracrine cascade establishes a pre-metastatic phase. Nat. Cell Biol. 10, 1349–1355 (2008).

    Article  CAS  Google Scholar 

  54. Uhlar, C.M. & Whitehead, A.S. The kinetics and magnitude of the synergistic activation of the serum amyloid A promoter by IL-1β and IL-6 is determined by the order of cytokine addition. Scand. J. Immunol. 49, 399–404 (1999).

    Article  CAS  Google Scholar 

  55. Uhlar, C.M. & Whitehead, A.S. Serum amyloid A, the major vertebrate acute-phase reactant. Eur. J. Biochem. 265, 501–523 (1999).

    Article  CAS  Google Scholar 

  56. Whicher, J.T., Chambers, R.E., Higginson, J., Nashef, L. & Higgins, P.G. Acute phase response of serum amyloid A protein and C reactive protein to the common cold and influenza. J. Clin. Pathol. 38, 312–316 (1985).

    Article  CAS  Google Scholar 

  57. Dunbar, P.R. et al. A shift in the phenotype of melan-A-specific CTL identifies melanoma patients with an active tumor-specific immune response. J. Immunol. 165, 6644–6652 (2000).

    Article  CAS  Google Scholar 

  58. Karadimitris, A. et al. Human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc. Natl. Acad. Sci. USA 98, 3294–3298 (2001).

    Article  CAS  Google Scholar 

  59. Corzo, C.A. et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J. Immunol. 182, 5693–5701 (2009).

    Article  CAS  Google Scholar 

  60. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  Google Scholar 

  61. Mendiratta, S.K. et al. CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 6, 469–477 (1997).

    Article  CAS  Google Scholar 

  62. Salio, M. et al. Mature dendritic cells prime functionally superior melan-A-specific CD8+ lymphocytes as compared with nonprofessional APC. J. Immunol. 167, 1188–1197 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Van Kaer (Vanderbilt University School of Medicine) for Cd1d−/− (CD45.2+/+) mice; R. Lisle and K. Hollowood for help in preparing melanoma sample sections and analyzing stained samples; G. Napolitani, A. Stock and M. Johnson for discussions and critical reading of the manuscript; and P. Polzella for technical support. Supported by Cancer Research UK (C399/A2291), the UK Medical Research Council, The Wellcome Trust (084923/Z/08/Z), the Cancer Research Institute, the Ludwig Institute for Cancer Research (V.C.), the Oxford National Institute for Health Research Biomedical Research Centre (M.M., R. Asher and M.J.) and the Oxford Experimental Cancer Medicine Centre (for clinical sample processing).

Author information

Authors and Affiliations

Authors

Contributions

C.D.S. designed and did the experiments, prepared the figures and contributed to the writing of the manuscript; R. Arscott did specific experiments; I.K. and M.M. obtained consent from patients with melanoma and collected blood samples; S.B., M.J. and R. Asher did tissue staining of melanoma sections; M.S. provided reagents and contributed to the writing of the manuscript; and V.C. designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Vincenzo Cerundolo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 815 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Santo, C., Arscott, R., Booth, S. et al. Invariant NKT cells modulate the suppressive activity of IL-10-secreting neutrophils differentiated with serum amyloid A. Nat Immunol 11, 1039–1046 (2010). https://doi.org/10.1038/ni.1942

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing