Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination

Abstract

Activation-induced cytidine deaminase (AID) is required for somatic hypermutation and immunoglobulin class switching in activated B cells. Because AID has no known target-site specificity, there have been efforts to identify non-immunoglobulin AID targets. We show here that AID acts promiscuously, generating widespread DNA double-strand breaks (DSBs), genomic instability and cytotoxicity in B cells with less homologous recombination ability. We demonstrate that the homologous-recombination factor XRCC2 suppressed AID-induced off-target DSBs, promoting B cell survival. Finally, we suggest that aberrations that affect human chromosome 7q36, including XRCC2, correlate with genomic instability in B cell cancers. Our findings demonstrate that AID has promiscuous genomic DSB-inducing activity, identify homologous recombination as a safeguard against off-target AID action, and have implications for genomic instability in B cell cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activation is cytotoxic to homologous recombination–defective B cells.
Figure 2: XRCC2-defective B cells have many AID-dependent DSBs.
Figure 3: AID generates widespread off-target DSBs.
Figure 4: Activation induces AID-dependent accumulation of XRCC2-defective B cells in S phase.
Figure 5: AID-induced cytotoxicity in homologous recombination–defective B cells is independent of apoptosis.
Figure 6: B cell activation induces chromosomal instability in homologous recombination–defective cells.
Figure 7: Chromosome 7q36 aberrations correspond to lower XRCC2 expression and karyotype instability in human B lymphoid cancer cells.

Similar content being viewed by others

References

  1. Mills, K.D., Ferguson, D.O. & Alt, F.W. The role of DNA breaks in genomic instability and tumorigenesis. Immunol. Rev. 194, 77–95 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Muramatsu, M., Nagaoka, H., Shinkura, R., Begum, N.A. & Honjo, T. Discovery of activation-induced cytidine deaminase, the engraver of antibody memory. Adv. Immunol. 94, 1–36 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Durandy, A., Taubenheim, N., Peron, S. & Fischer, A. Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies. Adv. Immunol. 94, 275–306 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Chaudhuri, J. et al. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv. Immunol. 94, 157–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Liu, M. et al. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451, 841–845 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Robbiani, D.F. et al. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135, 1028–1038 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, M. & Schatz, D.G. Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. 30, 173–181 (2009).

    Article  PubMed  Google Scholar 

  8. Tsai, A.G. et al. Human chromosomal translocations at CpG sites and a theoretical basis for their lineage and stage specificity. Cell 135, 1130–1142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahowald, G.K., Baron, J.M. & Sleckman, B.P. Collateral damage from antigen receptor gene diversification. Cell 135, 1009–1012 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Thacker, J. The role of homologous recombination processes in the repair of severe forms of DNA damage in mammalian cells. Biochimie 81, 77–85 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Braybrooke, J.P., Spink, K.G., Thacker, J. & Hickson, I.D. The RAD51 family member, RAD51L3, is a DNA-stimulated ATPase that forms a complex with XRCC2. J. Biol. Chem. 275, 29100–29106 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Deans, B., Griffin, C.S., Maconochie, M. & Thacker, J. Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice. EMBO J. 19, 6675–6685 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, N. XRCC2 is required for the formation of Rad51 foci induced by ionizing radiation and DNA cross-linking agent mitomycin C. J. Biomed. Biotechnol. 2, 106–113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Deans, B., Griffin, C.S., O'Regan, P., Jasin, M. & Thacker, J. Homologous recombination deficiency leads to profound genetic instability in cells derived from Xrcc2-knockout mice. Cancer Res. 63, 8181–8187 (2003).

    CAS  PubMed  Google Scholar 

  15. Orii, K.E., Lee, Y., Kondo, N. & McKinnon, P.J. Selective utilization of nonhomologous end-joining and homologous recombination DNA repair pathways during nervous system development. Proc. Natl. Acad. Sci. USA 103, 10017–10022 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Adam, J., Deans, B. & Thacker, J. A role for Xrcc2 in the early stages of mouse development. DNA Repair (Amst.) 6, 224–234 (2007).

    Article  CAS  Google Scholar 

  17. Caddle, L.B., Hasham, M.G., Schott, W.H., Shirley, B.J. & Mills, K.D. Homologous recombination is necessary for normal lymphocyte development. Mol. Cell. Biol. 28, 2295–2303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, M.J. et al. Rad51 expression and localization in B cells carrying out class switch recombination. Proc. Natl. Acad. Sci. USA 93, 10222–10227 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Borzillo, G.V., Endo, K. & Tsujimoto, Y. Bcl-2 confers growth and survival advantage to interleukin 7-dependent early pre-B cells which become factor independent by a multistep process in culture. Oncogene 7, 869–876 (1992).

    CAS  PubMed  Google Scholar 

  20. Johnson, R.D., Liu, N. & Jasin, M. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination. Nature 401, 397–399 (1999).

    CAS  PubMed  Google Scholar 

  21. Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S. & Bonner, W.M. DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J. Biol. Chem. 273, 5858–5868 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Nakamura, M. et al. High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int. Immunol. 8, 193–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Thacker, J., Tambini, C.E., Simpson, P.J., Tsui, L.C. & Scherer, S.W. Localization to chromosome 7q36.1 of the human XRCC2 gene, determining sensitivity to DNA-damaging agents. Hum. Mol. Genet. 4, 113–120 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Dohner, K. et al. Molecular cytogenetic characterization of a critical region in bands 7q35-q36 commonly deleted in malignant myeloid disorders. Blood 92, 4031–4035 (1998).

    CAS  PubMed  Google Scholar 

  25. Simmons, H.M. et al. Cytogenetic and molecular heterogeneity of 7q36/12p13 rearrangements in childhood AML. Leukemia 16, 2408–2416 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Mao, X. et al. A case of adult T-cell leukaemia/lymphoma characterized by multiplex-fluorescence in situ hybridization, comparative genomic hybridization, fluorescence in situ hybridization and cytogenetics. Br. J. Dermatol. 145, 117–122 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Chaudhuri, J., Khuong, C. & Alt, F.W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430, 992–998 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Thompson, L.H. & Schild, D. Recombinational DNA repair and human disease. Mutat. Res. 509, 49–78 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Nakano, T. et al. Homologous recombination but not nucleotide excision repair plays a pivotal role in tolerance to DNA-protein crosslinks in mammalian cells. J. Biol. Chem. 284, 27065–27076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Couedel, C. et al. Collaboration of homologous recombination and nonhomologous end-joining factors for the survival and integrity of mice and cells. Genes Dev. 18, 1293–1304 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramiro, A. et al. The role of activation induced cytidine deaminase in antibody diversification and chromosome translocations. Adv. Immunol. 94, 75–96 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Soulas-Sprauel, P. et al. V(D)J and immunoglobulin class switch recombinations: a paradigm to study the regulation of DNA end-joining. Oncogene 26, 7780–7791 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Danoy, P., Sonoda, E., Lathrop, M., Takeda, S. & Matsuda, F. A naturally occurring genetic variant of human XRCC2 (R188H) confers increased resistance to cisplatin-induced DNA damage. Biochem. Biophys. Res. Commun. 352, 763–768 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Sale, J.E., Calandrini, D.M., Takata, M., Takeda, S. & Neuberger, M.S. Ablation of XRCC2/3 transforms immunoglobulin V gene conversion into somatic hypermutation. Nature 412, 921–926 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Zaheen, A. et al. AID constrains germinal center size by rendering B cells susceptible to apoptosis. Blood 114, 547–554 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Caddle, L.B., Hasham, M.G., Schott, W.H., Shirley, B.J. & Mills, K.D. Homologous recombination is necessary for normal lymphocyte development. Mol. Cell. Biol. 28, 2295–2303 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Muramatsu, M. et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553–563 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Nakamura, M. et al. High frequency class switching of an IgM+ B lymphoma clone CH12F3 to IgA+ cells. Int. Immunol. 8, 193–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Hasham, M.G. & Tsygankov, A.Y. Tip, an Lck-interacting protein of Herpesvirus saimiri, causes Fas- and Lck-dependent apoptosis of T lymphocytes. Virology 320, 313–329 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Deans, B., Griffin, C.S., Maconochie, M. & Thacker, J. Xrcc2 is required for genetic stability, embryonic neurogenesis and viability in mice. EMBO J. 19, 6675–6685 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Woo, Y. et al. The nonhomologous end joining factor Artemis suppresses multi-tissue tumor formation and prevents loss of heterozygosity. Oncogene 26, 6010–6020 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Wright, S.M. et al. Complex oncogenic translocations with gene amplification are initiated by specific DNA breaks in lymphocytes. Cancer Res. 69, 4454–4460 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Honjo (Kyoto Univesity), R. Maser and S. LaSalle (The Jackson Laboratory) and A.Y. Tsygankov (Temple University School of Medicine) for reagents and mice; C. Boboila, B. Schwer and F.W. Alt (Children's Hospital, Boston) and J. Chaudhuri (Memorial Sloan-Kettering Cancer Center) for reagents and technical assistance; and the Jackson Laboratory Gene Expression, Molecular Biology and Flow Cytometry Services for technical support. Supported by the US National Institutes of Health (R01CA138646, P20RR018789-06, T32DK07449-26 and P30CA034196) and the Maine Cancer Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.G.H. designed and did experiments and wrote the manuscript; J.A., E.C., N.M.D., J.M. and K.J.S. did experiments and contributed data; Y.H., B.L.K. and R.Y.W. contributed data; and K.D.M. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Kevin D Mills.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17 (PDF 3097 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasham, M., Donghia, N., Coffey, E. et al. Widespread genomic breaks generated by activation-induced cytidine deaminase are prevented by homologous recombination. Nat Immunol 11, 820–826 (2010). https://doi.org/10.1038/ni.1909

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1909

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing