Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Decision checkpoints in the thymus

An Erratum to this article was published on 15 February 2011

This article has been updated

Abstract

The development of T cells in the thymus involves several differentiation and proliferation events, during which hematopoietic precursors give rise to T cells ready to respond to antigen stimulation and undergo effector differentiation. This review addresses signaling and transcriptional checkpoints that control the intrathymic journey of T cell precursors. We focus on the divergence of αβ and γδ lineage cells and the elaboration of the αβ T cell repertoire, with special emphasis on the emergence of transcriptional programs that direct lineage decisions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of T cell development, depicting thymic developmental stages.
Figure 2: Transcriptional circuitries in differentiating αβ T cells.
Figure 3: CD4-CD8 lineage differentiation.
Figure 4: An hypothetical transcriptional network in mature thymocytes and T cells.

Similar content being viewed by others

Change history

  • 02 September 2010

    In the version of this article initially published online, no Competing Financial Interest statement was included. The authors declare no competing financial interests. The error has been corrected for all versions of this article.

References

  1. Hayday, A.C. γδ T cells and the lymphoid stress-surveillance response. Immunity 31, 184–196 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Matthews, A.G. & Oettinger, M.A. RAG: a recombinase diversified. Nat. Immunol. 10, 817–821 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhandoola, A., von Boehmer, H., Petrie, H.T. & Zuniga-Pflucker, J.C. Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity 26, 678–689 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Chi, A.W., Bell, J.J., Zlotoff, D.A. & Bhandoola, A. Untangling the T branch of the hematopoiesis tree. Curr. Opin. Immunol. 21, 121–126 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wada, H. et al. Adult T-cell progenitors retain myeloid potential. Nature 452, 768–772 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Bell, J.J. & Bhandoola, A. The earliest thymic progenitors for T cells possess myeloid lineage potential. Nature 452, 764–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Schlenner, S.M. et al. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32, 426–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Nitta, T., Murata, S., Ueno, T., Tanaka, K. & Takahama, Y. Thymic microenvironments for T-cell repertoire formation. Adv. Immunol. 99, 59–94 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Maillard, I., Fang, T. & Pear, W.S. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu. Rev. Immunol. 23, 945–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Radtke, F., Fasnacht, N. & Macdonald, H.R. Notch signaling in the immune system. Immunity 32, 14–27 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Rothenberg, E.V., Moore, J.E. & Yui, M.A. Launching the T-cell-lineage developmental programme. Nat. Rev. Immunol. 8, 9–21 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maeda, T. et al. Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science 316, 860–866 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Visan, I. et al. Regulation of T lymphopoiesis by Notch1 and Lunatic fringe–mediated competition for intrathymic niches. Nat. Immunol. 7, 634–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Yashiro-Ohtani, Y. et al. Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A. Genes Dev. 23, 1665–1676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fiorini, E. et al. Dynamic regulation of Notch 1 and Notch 2 surface expression during T cell development and activation revealed by novel monoclonal antibodies. J. Immunol. 183, 7212–7222 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nat. Immunol. 8, 463–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Krangel, M.S. Mechanics of T cell receptor gene rearrangement. Curr. Opin. Immunol. 21, 133–139 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. von Boehmer, H. Unique features of the pre-T-cell receptor α-chain: not just a surrogate. Nat. Rev. Immunol. 5, 571–577 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Yamasaki, S. et al. Mechanistic basis of pre-T cell receptor-mediated autonomous signaling critical for thymocyte development. Nat. Immunol. 7, 67–75 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Janas, M.L. et al. Thymic development beyond beta-selection requires phosphatidylinositol 3-kinase activation by CXCR4. J. Exp. Med. 207, 247–261 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Trampont, P.C. et al. CXCR4 acts as a costimulator during thymic β-selection. Nat. Immunol. 11, 162–170 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Maillard, I. et al. The requirement for Notch signaling at the beta-selection checkpoint in vivo is absolute and independent of the pre-T cell receptor. J. Exp. Med. 203, 2239–2245 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ciofani, M., Knowles, G.C., Wiest, D.L., von Boehmer, H. & Zuniga-Pflucker, J.C. Stage-specific and differential notch dependency at the αβ and γδ T lineage bifurcation. Immunity 25, 105–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Fry, T.J. & Mackall, C.L. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J. Immunol. 174, 6571–6576 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Chong, M.M. et al. Suppressor of cytokine signaling-1 is a critical regulator of interleukin-7-dependent CD8+ T cell differentiation. Immunity 18, 475–487 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Hayes, S.M. & Love, P.E. A retrospective on the requirements for γδ T-cell development. Immunol. Rev. 215, 8–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Hayes, S.M., Li, L. & Love, P.E. TCR signal strength influences αβ/γδ lineage fate. Immunity 22, 583–593 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Haks, M.C. et al. Attenuation of γδTCR signaling efficiently diverts thymocytes to the αβ lineage. Immunity 22, 595–606 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Boyden, L.M. et al. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal γδ T cells. Nat. Genet. 40, 656–662 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wakabayashi, Y. et al. Bcl11b is required for differentiation and survival of αβ T lymphocytes. Nat. Immunol. 4, 533–539 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Kreslavsky, T., Garbe, A.I., Krueger, A. & von Boehmer, H. T cell receptor-instructed αβ versus γδ lineage commitment revealed by single-cell analysis. J. Exp. Med. 205, 1173–1186 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kreslavsky, T., Gleimer, M. & von Boehmer, H. αβ versus γδ lineage choice at the first TCR-controlled checkpoint. Curr. Opin. Immunol. 22, 185–192 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taghon, T. & Rothenberg, E.V. Molecular mechanisms that control mouse and human TCR-αβ and TCR-γδ T cell development. Semin. Immunopathol. 30, 383–398 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Engel, I., Johns, C., Bain, G., Rivera, R.R. & Murre, C. Early thymocyte development is regulated by modulation of E2A protein activity. J. Exp. Med. 194, 733–745 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kee, B.L. E and ID proteins branch out. Nat. Rev. Immunol. 9, 175–184 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Lauritsen, J.P. et al. Marked induction of the helix-loop-helix protein Id3 promotes the γδ T cell fate and renders their functional maturation Notch independent. Immunity 31, 565–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garbe, A.I., Krueger, A., Gounari, F., Zuniga-Pflucker, J.C. & von Boehmer, H. Differential synergy of Notch and T cell receptor signaling determines αβ versus γδ lineage fate. J. Exp. Med. 203, 1579–1590 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Taghon, T., Yui, M.A., Pant, R., Diamond, R.A. & Rothenberg, E.V. Developmental and molecular characterization of emerging β- and γδ-selected pre-T cells in the adult mouse thymus. Immunity 24, 53–64 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Alonzo, E.S. et al. Development of promyelocytic zinc finger and ThPOK-expressing innate γδ T cells is controlled by strength of TCR signaling and Id3. J. Immunol. 184, 1268–1279 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Egawa, T., Tillman, R.E., Naoe, Y., Taniuchi, I. & Littman, D.R. The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J. Exp. Med. 204, 1945–1957 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guo, J. et al. Regulation of the TCRα repertoire by the survival window of CD4+CD8+ thymocytes. Nat. Immunol. 3, 469–476 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Ioannidis, V., Beermann, F., Clevers, H. & Held, W. The β-catenin–TCF-1 pathway ensures CD4+CD8+ thymocyte survival. Nat. Immunol. 2, 691–697 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Jeannet, G. et al. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 111, 142–149 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Koch, U. et al. Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis. Blood 111, 160–164 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Yu, Q., Sharma, A. & Sen, J.M. TCF1 and β-catenin regulate T cell development and function. Immunol. Res. published online, doi:10.1007/s12026-009-8137-2 (16 January 2010).

  46. Melichar, H.J. et al. Regulation of γδ versus αβ T lymphocyte differentiation by the transcription factor SOX13. Science 315, 230–233 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Feng, D., Bond, C.J., Ely, L.K., Maynard, J. & Garcia, K.C. Structural evidence for a germline-encoded T cell receptor-major histocompatibility complex interaction 'codon'. Nat. Immunol. 8, 975–983 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Marrack, P., Scott-Browne, J.P., Dai, S., Gapin, L. & Kappler, J.W. Evolutionarily conserved amino acids that control TCR-MHC interaction. Annu. Rev. Immunol. 26, 171–203 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van Laethem, F. et al. Deletion of CD4 and CD8 coreceptors permits generation of αβT cells that recognize antigens independently of the MHC. Immunity 27, 735–750 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. von Boehmer, H. & Melchers, F. Checkpoints in lymphocyte development and autoimmune disease. Nat. Immunol. 11, 14–20 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Mathis, D. & Benoist, C. Aire. Annu. Rev. Immunol. 27, 287–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Josefowicz, S.Z. & Rudensky, A. Control of regulatory T cell lineage commitment and maintenance. Immunity 30, 616–625 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bautista, J.L. et al. Intraclonal competition limits the fate determination of regulatory T cells in the thymus. Nat. Immunol. 10, 610–617 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nakagawa, T. et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280, 450–453 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Klein, L., Hinterberger, M., Wirnsberger, G. & Kyewski, B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat. Rev. Immunol. 9, 833–844 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Nitta, T. et al. Thymoproteasome shapes immunocompetent repertoire of CD8+ T cells. Immunity 32, 29–40 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. Daniels, M.A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    Article  CAS  PubMed  Google Scholar 

  59. Azzam, H.S. et al. Fine tuning of TCR signaling by CD5. J. Immunol. 166, 5464–5472 (2001).

    Article  CAS  PubMed  Google Scholar 

  60. Li, Q.J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Gallo, E.M. et al. Calcineurin sets the bandwidth for discrimination of signals during thymocyte development. Nature 450, 731–735 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiao, C. & Rajewsky, K. MicroRNA control in the immune system: basic principles. Cell 136, 26–36 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, N., Hartig, H., Dzhagalov, I., Draper, D. & He, Y.W. The role of apoptosis in the development and function of T lymphocytes. Cell Res. 15, 749–769 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Dzhagalov, I., Dunkle, A. & He, Y.W. The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages. J. Immunol. 181, 521–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Nitta, T., Nitta, S., Lei, Y., Lipp, M. & Takahama, Y. CCR7-mediated migration of developing thymocytes to the medulla is essential for negative selection to tissue-restricted antigens. Proc. Natl. Acad. Sci. USA 106, 17129–17133 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sudo, T. et al. Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc. Natl. Acad. Sci. USA 90, 9125–9129 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, L. & Bosselut, R. CD4–CD8 lineage differentiation: Thpok-ing into the nucleus. J. Immunol. 183, 2903–2910 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Singer, A., Adoro, S. & Park, J.H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat. Rev. Immunol. 8, 788–801 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fischer, A.M., Katayama, C.D., Pages, G., Pouyssegur, J. & Hedrick, S.M. The role of erk1 and erk2 in multiple stages of T cell development. Immunity 23, 431–443 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Wang, L., Xiong, Y. & Bosselut, R. Tenuous paths in unexplored territory: from T cell receptor signaling to effector gene expression during thymocyte selection. Semin. Immunol. published online, doi:10.1016/j.smim.2010.04.013 (7 June 2010).

  71. Jones, M.E. & Zhuang, Y. Regulation of V(D)J recombination by E-protein transcription factors. Adv. Exp. Med. Biol. 650, 148–156 (2009).

    Article  CAS  PubMed  Google Scholar 

  72. Jones, M.E. & Zhuang, Y. Acquisition of a functional T cell receptor during T lymphocyte development is enforced by HEB and E2A transcription factors. Immunity 27, 860–870 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bain, G. et al. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nat. Immunol. 2, 165–171 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Costello, P.S., Nicolas, R.H., Watanabe, Y., Rosewell, I. & Treisman, R. Ternary complex factor SAP-1 is required for Erk-mediated thymocyte positive selection. Nat. Immunol. 5, 289–298 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Corbella, P. et al. Functional commitment to helper T cell lineage precedes positive selection and is independent of T cell receptor MHC specificity. Immunity 1, 269–276 (1994).

    Article  CAS  PubMed  Google Scholar 

  76. Matechak, E.O., Killeen, N., Hedrick, S.M. & Fowlkes, B.J. MHC class II-specific T cells can develop in the CD8 lineage when CD4 is absent. Immunity 4, 337–347 (1996).

    Article  CAS  PubMed  Google Scholar 

  77. Collins, A., Littman, D.R. & Taniuchi, I. RUNX proteins in transcription factor networks that regulate T-cell lineage choice. Nat. Rev. Immunol. 9, 106–115 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Wang, L. et al. Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4+ T cells. Nat. Immunol. 9, 1122–1130 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Egawa, T. & Littman, D.R. ThPOK acts late in specification of the helper T cell lineage and suppresses Runx-mediated commitment to the cytotoxic T cell lineage. Nat. Immunol. 9, 1131–1139 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Muroi, S. et al. Cascading suppression of transcriptional silencers by ThPOK seals helper T cell fate. Nat. Immunol. 9, 1113–1121 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Setoguchi, R. et al. Repression of the transcription factor Th-POK by Runx complexes in cytotoxic T cell development. Science 319, 822–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  83. Zamisch, M. et al. The transcription factor Ets1 is important for CD4 repression and Runx3 up-regulation during CD8 T cell differentiation in the thymus. J. Exp. Med. 206, 2685–2699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sun, G. et al. The zinc finger protein cKrox directs CD4 lineage differentiation during intrathymic T cell positive selection. Nat. Immunol. 6, 373–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  85. He, X. et al. CD4–CD8 lineage commitment is regulated by a silencer element at the ThPOK transcription-factor locus. Immunity 28, 346–358 (2008).

    Article  CAS  PubMed  Google Scholar 

  86. Sakaguchi, S. et al. The zinc-finger protein MAZR is part of the transcription factor network that controls the CD4 versus CD8 lineage fate of double-positive thymocytes. Nat. Immunol. 11, 442–448 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pai, S.Y. et al. Critical roles for transcription factor GATA-3 in thymocyte development. Immunity 19, 863–875 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Aliahmad, P. & Kaye, J. Development of all CD4 T lineages requires nuclear factor TOX. J. Exp. Med. 205, 245–256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hernandez-Hoyos, G., Anderson, M.K., Wang, C., Rothenberg, E.V. & Alberola-Ila, J. GATA-3 expression is controlled by TCR signals and regulates CD4/CD8 differentiation. Immunity 19, 83–94 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Robey, E. Introduction: commitment to CD4 and CD8 lineages–stochastic or instructive? Semin. Immunol. 6, 207–208 (1994).

    Article  CAS  PubMed  Google Scholar 

  91. von Boehmer, H. CD4/CD8 lineage commitment: back to instruction? J. Exp. Med. 183, 713–715 (1996).

    Article  CAS  PubMed  Google Scholar 

  92. Germain, R.N. T-cell development and the CD4–CD8 lineage decision. Nat. Rev. Immunol. 2, 309–322 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Liu, X. & Bosselut, R. Duration of TCR signaling controls CD4–CD8 lineage differentiation in vivo. Nat. Immunol. 5, 280–288 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Sarafova, S.D. et al. Modulation of coreceptor transcription during positive selection dictates lineage fate independently of TCR/coreceptor specificity. Immunity 23, 75–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Sarafova, S.D. et al. Upregulation of CD4 expression during MHC class II-specific positive selection is essential for error-free lineage choice. Immunity 31, 480–490 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Park, J.H. et al. Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257–264 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Carlson, C.M. et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 442, 299–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Shiow, L.R. et al. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Weinreich, M.A. et al. KLF2 transcription-factor deficiency in T cells results in unrestrained cytokine production and upregulation of bystander chemokine receptors. Immunity 31, 122–130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ouyang, W., Beckett, O., Flavell, R.A. & Li, M.O. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30, 358–371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fabre, S. et al. FOXO1 regulates L-Selectin and a network of human T cell homing molecules downstream of phosphatidylinositol 3-kinase. J. Immunol. 181, 2980–2989 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Kerdiles, Y.M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat. Immunol. 10, 176–184 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Hedrick, S.M. The cunning little vixen: Foxo and the cycle of life and death. Nat. Immunol. 10, 1057–1063 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Finlay, D. & Cantrell, D. Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration. Ann. NY Acad. Sci. 1183, 149–157 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Egawa, T. et al. Genetic evidence supporting selection of the Vα14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22, 705–716 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Griewank, K. et al. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 27, 751–762 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Savage, A.K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kovalovsky, D. et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9, 1055–1064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Laky, K. & Fowlkes, B.J. Presenilins regulate αβ T cell development by modulating TCR signaling. J. Exp. Med. 204, 2115–2129 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Johnson, A.L. et al. Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. Nat. Immunol. 10, 831–839 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lesourne, R. et al. Themis, a T cell-specific protein important for late thymocyte development. Nat. Immunol. 10, 840–847 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fu, G. et al. Themis controls thymocyte selection through regulation of T cell antigen receptor-mediated signaling. Nat. Immunol. 10, 848–856 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kakugawa, K. et al. A novel gene essential for the development of single positive thymocytes. Mol. Cell. Biol. 29, 5128–5135 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Patrick, M.S. et al. Gasp, a Grb2-associating protein, is critical for positive selection of thymocytes. Proc. Natl. Acad. Sci. USA 106, 16345–16350 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhu, J. & Paul, W.E. CD4 T cells: fates, functions, and faults. Blood 112, 1557–1569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Stockinger, B. & Murphy, K. Decision making in CD4 T cells: the advantage of being flexible. Nat. Immunol. (20 July 2010) 10.1038/ni.1899.

  119. Wang, L. et al. The zinc finger transcription factor Zbtb7b represses CD8-lineage gene expression in peripheral CD4+ T cells. Immunity 29, 876–887 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Zou, Y.R. et al. Epigenetic silencing of CD4 in T cells committed to the cytotoxic lineage. Nat. Genet. 29, 332–336 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Kreslavsky, T. et al. TCR-inducible PLZF transcription factor required for innate phenotype of a subset of γδ T cells with restricted TCR diversity. Proc. Natl. Acad. Sci. USA 106, 12453–12458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Raberger, J. et al. The transcriptional regulator PLZF induces the development of CD44 high memory phenotype T cells. Proc. Natl. Acad. Sci. USA 105, 17919–17924 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schwartzberg, P.L., Mueller, K.L., Qi, H. & Cannons, J.L. SLAM receptors and SAP influence lymphocyte interactions, development and function. Nat. Rev. Immunol. 9, 39–46 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Prince, A.L., Yin, C.C., Enos, M.E., Felices, M. & Berg, L.J. The Tec kinases Itk and Rlk regulate conventional versus innate T-cell development. Immunol. Rev. 228, 115–131 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Feng, X. et al. Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development. Blood 115, 510–518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Berger, M. et al. An Slfn2 mutation causes lymphoid and myeloid immunodeficiency due to loss of immune cell quiescence. Nat. Immunol. 11, 335–343 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. van Ewijk, W., Shores, E.W. & Singer, A. Crosstalk in the mouse thymus. Immunol. Today 15, 214–217 (1994).

    Article  CAS  PubMed  Google Scholar 

  129. McCaughtry, T.M., Wilken, M.S. & Hogquist, K.A. Thymic emigration revisited. J. Exp. Med. 204, 2513–2520 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Porritt, H.E. et al. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20, 735–745 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Ashwell, A. Bhandoola, A. Gégonne, P. Love and A. Singer for their comments on the manuscript. We apologize to colleagues whose work was not directly referenced because of space constraints. Research work in the authors' laboratory is supported by the Intramural Research Program of the National Cancer Institute, Center for Cancer Research, US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rémy Bosselut.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, A., Bosselut, R. Decision checkpoints in the thymus. Nat Immunol 11, 666–673 (2010). https://doi.org/10.1038/ni.1887

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing