Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustained signaling by canonical helper T cell cytokines throughout the reactive lymph node

Abstract

Cytokines are soluble proteins that regulate immune responses. The present paradigm is that cytokine production in lymphoid tissues is tightly localized and signaling occurs between conjugate cells. Here we assess cytokine signaling during infection by measuring in vivo phosphorylation of intracellular signal transducer and activator of transcription (STAT) proteins. We show that interferon-γ (IFN-γ) and interleukin 4 (IL-4) signaled to the majority of lymphocytes throughout the reactive lymph node and that IL-4 conditioning of naive, bystander cells was sufficient to override opposing T helper type 1 (TH1) polarization. Our results demonstrate that despite localized production, cytokines can permeate a lymph node and modify the majority of cells therein. Cytokine conditioning of bystander cells could provide a mechanism by which chronic worm infections subvert the host response to subsequent infections or vaccination attempts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-4 signals elicit STAT6 phosphorylation and IL-4R upregulation throughout a TH2-reactive lymph node.
Figure 2: IFN-γ signals permeate a TH1-reactive lymph node.
Figure 3: STAT6 phosphorylation occurs in draining but not nondraining lymphoid tissues.
Figure 4: STAT6 phosphorylation in the TH2-reactive lymph node is sustained and reflects continuous IL-4R triggering.
Figure 5: Estimation of the effective interstitial IL-4 concentration in the TH2-reactive lymph node.
Figure 6: IL-4 conditioning of naive lymphocytes alters subsequent helper T cell polarization.

Similar content being viewed by others

References

  1. O'Garra, A. & Murphy, K. Role of cytokines in determining T-lymphocyte function. Curr. Opin. Immunol. 6, 458–466 (1994).

    Article  CAS  Google Scholar 

  2. Anthony, R.M., Rutitzky, L.I., Urban, J.F. Jr., Stadecker, M.J. & Gause, W.C. Protective immune mechanisms in helminth infection. Nat. Rev. Immunol. 7, 975–987 (2007).

    Article  CAS  Google Scholar 

  3. Zhu, J. & Paul, W.E. CD4 T cells: fates, functions, and faults. Blood 112, 1557–1569 (2008).

    Article  CAS  Google Scholar 

  4. Shimoda, K. et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    Article  CAS  Google Scholar 

  5. Kaplan, M.H., Schindler, U., Smiley, S.T. & Grusby, M.J. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4, 313–319 (1996).

    Article  CAS  Google Scholar 

  6. Finkelman, F.D. et al. Cytokine regulation of host defense against parasitic gastrointestinal nematodes: lessons from studies with rodent models. Annu. Rev. Immunol. 15, 505–533 (1997).

    Article  CAS  Google Scholar 

  7. Reinhardt, R.L., Liang, H.E. & Locksley, R.M. Cytokine-secreting follicular T cells shape the antibody repertoire. Nat. Immunol. 10, 385–393 (2009).

    Article  CAS  Google Scholar 

  8. King, I.L. & Mohrs, M. IL-4-producing CD4+ T cells in reactive lymph nodes during helminth infection are T follicular helper cells. J. Exp. Med. 206, 1001–1007 (2009).

    Article  CAS  Google Scholar 

  9. Zaretsky, A.G. et al. T follicular helper cells differentiate from Th2 cells in response to helminth antigens. J. Exp. Med. 206, 991–999 (2009).

    Article  CAS  Google Scholar 

  10. Poo, W.J., Conrad, L. & Janeway, C.A. Jr. Receptor-directed focusing of lymphokine release by helper T cells. Nature 332, 378–380 (1988).

    Article  CAS  Google Scholar 

  11. Kupfer, A., Mosmann, T.R. & Kupfer, H. Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc. Natl. Acad. Sci. USA 88, 775–779 (1991).

    Article  CAS  Google Scholar 

  12. Paul, W.E. & Seder, R.A. Lymphocyte responses and cytokines. Cell 76, 241–251 (1994).

    Article  CAS  Google Scholar 

  13. O'Shea, J.J. Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? Immunity 7, 1–11 (1997).

    Article  CAS  Google Scholar 

  14. Takeda, K. et al. Essential role of Stat6 in IL-4 signalling. Nature 380, 627–630 (1996).

    Article  CAS  Google Scholar 

  15. Nelms, K., Keegan, A.D., Zamorano, J., Ryan, J.J. & Paul, W.E. The IL-4 receptor: signaling mechanisms and biologic functions. Annu. Rev. Immunol. 17, 701–738 (1999).

    Article  CAS  Google Scholar 

  16. Mohrs, K., Wakil, A.E., Killeen, N., Locksley, R.M. & Mohrs, M.A. Two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity 23, 419–429 (2005).

    Article  CAS  Google Scholar 

  17. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  Google Scholar 

  18. Perona-Wright, G., Mohrs, K., Mayer, K.D. & Mohrs, M. Differential regulation of IL-4Rα expression by antigen versus cytokine stimulation characterizes Th2 progression in vivo. J. Immunol. 184, 615–623 (2010).

    Article  CAS  Google Scholar 

  19. Ohara, J. & Paul, W.E. Up-regulation of interleukin 4/B-cell stimulatory factor 1 receptor expression. Proc. Natl. Acad. Sci. USA 85, 8221–8225 (1988).

    Article  CAS  Google Scholar 

  20. Schindler, C., Shuai, K., Prezioso, V.R. & Darnell, J.E. Jr. Interferon-dependent tyrosine phosphorylation of a latent cytoplasmic transcription factor. Science 257, 809–813 (1992).

    Article  CAS  Google Scholar 

  21. Maldonado, R.A. et al. Control of T helper cell differentiation through cytokine receptor inclusion in the immunological synapse. J. Exp. Med. 206, 877–892 (2009).

    Article  CAS  Google Scholar 

  22. Bach, E.A. et al. Ligand-induced autoregulation of IFN-γ receptor β chain expression in T helper cell subsets. Science 270, 1215–1218 (1995).

    Article  CAS  Google Scholar 

  23. Zhou, F. Molecular mechanisms of IFN-γ to up-regulate MHC class I antigen processing and presentation. Int. Rev. Immunol. 28, 239–260 (2009).

    Article  CAS  Google Scholar 

  24. Manetti, R. et al. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J. Exp. Med. 177, 1199–1204 (1993).

    Article  CAS  Google Scholar 

  25. Trinchieri, G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu. Rev. Immunol. 13, 251–276 (1995).

    Article  CAS  Google Scholar 

  26. Szabo, S.J., Dighe, A.S., Gubler, U. & Murphy, K.M. Regulation of the interleukin (IL)-12R β2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185, 817–824 (1997).

    Article  CAS  Google Scholar 

  27. Perona-Wright, G. et al. Systemic but not local infections elicit immunosuppressive IL-10 production by natural killer cells. Cell Host Microbe 6, 503–512 (2009).

    Article  CAS  Google Scholar 

  28. Ekkens, M.J. et al. The role of OX40 ligand interactions in the development of the Th2 response to the gastrointestinal nematode parasite Heligmosomoides polygyrus. J. Immunol. 170, 384–393 (2003).

    Article  CAS  Google Scholar 

  29. Hotson, A.N., Hardy, J.W., Hale, M.B., Contag, C.H. & Nolan, G.P. The T cell STAT signaling network is reprogrammed within hours of bacteremia via secondary signals. J. Immunol. 182, 7558–7568 (2009).

    Article  CAS  Google Scholar 

  30. Andrews, R.P., Ericksen, M.B., Cunningham, C.M., Daines, M.O. & Hershey, G.K. Analysis of the life cycle of stat6. Continuous cycling of STAT6 is required for IL-4 signaling. J. Biol. Chem. 277, 36563–36569 (2002).

    Article  CAS  Google Scholar 

  31. Galizzi, J.P., Zuber, C.E., Cabrillat, H., Djossou, O. & Banchereau, J. Internalization of human interleukin 4 and transient down-regulation of its receptor in the CD23-inducible Jijoye cells. J. Biol. Chem. 264, 6984–6989 (1989).

    CAS  PubMed  Google Scholar 

  32. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  Google Scholar 

  33. Robinson, R.T. et al. Yersinia pestis evades TLR4-dependent induction of IL-12(p40)2 by dendritic cells and subsequent cell migration. J. Immunol. 181, 5560–5567 (2008).

    Article  CAS  Google Scholar 

  34. Maldonado, R.A., Irvine, D.J., Schreiber, R. & Glimcher, L.H. A role for the immunological synapse in lineage commitment of CD4 lymphocytes. Nature 431, 527–532 (2004).

    Article  CAS  Google Scholar 

  35. Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 1869–1873 (2002).

    Article  CAS  Google Scholar 

  36. Campbell, D.J. & Butcher, E.C. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195, 135–141 (2002).

    Article  CAS  Google Scholar 

  37. Weninger, W., Crowley, M.A., Manjunath, N. & von Andrian, U.H. Migratory properties of naive, effector, and memory CD8+ T cells. J. Exp. Med. 194, 953–966 (2001).

    Article  CAS  Google Scholar 

  38. Huse, M., Lillemeier, B.F., Kuhns, M.S., Chen, D.S. & Davis, M.M. T cells use two directionally distinct pathways for cytokine secretion. Nat. Immunol. 7, 247–255 (2006).

    Article  CAS  Google Scholar 

  39. Haque, S.J. et al. Receptor-associated constitutive protein tyrosine phosphatase activity controls the kinase function of JAK1. Proc. Natl. Acad. Sci. USA 94, 8563–8568 (1997).

    Article  CAS  Google Scholar 

  40. Haque, S.J., Harbor, P., Tabrizi, M., Yi, T. & Williams, B.R. Protein-tyrosine phosphatase Shp-1 is a negative regulator of IL-4- and IL-13-dependent signal transduction. J. Biol. Chem. 273, 33893–33896 (1998).

    Article  CAS  Google Scholar 

  41. Hanson, E.M., Dickensheets, H., Qu, C.K., Donnelly, R.P. & Keegan, A.D. Regulation of the dephosphorylation of Stat6. Participation of Tyr-713 in the interleukin-4 receptor α, the tyrosine phosphatase SHP-1, and the proteasome. J. Biol. Chem. 278, 3903–3911 (2003).

    Article  CAS  Google Scholar 

  42. Tanaka, Y. et al. T helper type 2 differentiation and intracellular trafficking of the interleukin 4 receptor-α subunit controlled by the Rac activator Dock2. Nat. Immunol. 8, 1067–1075 (2007).

    Article  CAS  Google Scholar 

  43. Skrenta, H., Yang, Y., Pestka, S. & Fathman, C.G. Ligand-independent down-regulation of IFN-γ receptor 1 following TCR engagement. J. Immunol. 164, 3506–3511 (2000).

    Article  CAS  Google Scholar 

  44. Toellner, K.M. et al. T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching. J. Exp. Med. 187, 1193–1204 (1998).

    Article  CAS  Google Scholar 

  45. Sutton, T.L. et al. Anti-inflammatory mechanisms of enteric Heligmosomoides polygyrus infection against trinitrobenzene sulfonic acid-induced colitis in a murine model. Infect. Immun. 76, 4772–4782 (2008).

    Article  CAS  Google Scholar 

  46. Elliott, D.E. et al. Colonization with Heligmosomoides polygyrus suppresses mucosal IL-17 production. J. Immunol. 181, 2414–2419 (2008).

    Article  CAS  Google Scholar 

  47. Bethony, J. et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 1521–1532 (2006).

    Article  Google Scholar 

  48. Mohrs, M. et al. Differences between IL-4- and IL-4 receptor α-deficient mice in chronic leishmaniasis reveal a protective role for IL-13 receptor signaling. J. Immunol. 162, 7302–7308 (1999).

    CAS  PubMed  Google Scholar 

  49. Mayer, K.D. et al. The functional heterogeneity of type 1 effector T cells in response to infection is related to the potential for IFN-γ production. J. Immunol. 174, 7732–7739 (2005).

    Article  CAS  Google Scholar 

  50. MacDonald, A.S., Straw, A.D., Bauman, B. & Pearce, E.J. CD8 dendritic cell activation status plays an integral role in influencing Th2 response development. J. Immunol. 167, 1982–1988 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L.L. Johnson for T. gondii infection; J.-S. Lin and S.T. Smiley (both with the Trudeau Institute) for heat-killed Y. pestis; E.J. Pearce (Trudeau Institute) for S. mansoni eggs; R.T. Robinson and A.M. Cooper (both with the Trudeau Institute) for Ifng−/− mice; and E.J. Pearce and D. Gray for discussion and comments on the manuscript. Supported by the Trudeau Institute and the National Institutes of Health (AI072296 and AI076479).

Author information

Authors and Affiliations

Authors

Contributions

G.P.-W. and M.M. designed the research and prepared the manuscript; G.P.-W. and K.M. did the experiments; G.P.-W. analyzed and interpreted the results; and M.M. guided the study.

Corresponding author

Correspondence to Markus Mohrs.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 (PDF 1184 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perona-Wright, G., Mohrs, K. & Mohrs, M. Sustained signaling by canonical helper T cell cytokines throughout the reactive lymph node. Nat Immunol 11, 520–526 (2010). https://doi.org/10.1038/ni.1866

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1866

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing