Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The transcription factor c-Myb primes CD4+CD8+ immature thymocytes for selection into the iNKT lineage

Abstract

Type I invariant NKT cells (iNKT cells) are a subset of αβ T cells characterized by the expression of an invariant α-chain variable region 14–α-chain joining region 18 (Vα14Jα18) T cell antigen receptor (TCR) α-chain. The iNKT cells derive from CD4+CD8+ double-positive (DP) thymocytes, and their generation requires a long half-life of DP thymocytes to allow Vα14-Jα18 rearrangements, expression of glycolipid-loaded CD1d on DP thymocytes, and signaling through the signaling-activation molecule SLAM–adaptor SAP pathway. Here we show that the transcription factor c-Myb has a central role in priming DP thymocytes to enter the iNKT lineage by simultaneously regulating CD1d expression, the half-life of DP cells and expression of SLAMF1, SLAMF6 and SAP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lack of iNKT cells in Mybf/fCd4-Cre mice.
Figure 2: Cell-intrinsic defect in iNKT cell development in c-Myb-deficient mice.
Figure 3: Defects in secondary TCRα rearragements in c-Myb-deficient thymocytes.
Figure 4: Defect in the survival of c-Myb-deficient DP thymocytes.
Figure 5: Bcl-xL overexpression in c-Myb-deficient thymocytes restores survival and rearrangement but not iNKT cell development.
Figure 6: Partial 'rescue' of the iNKT cell defect in c-Myb-deficient mice by a rearranged Vα14Jα18 TCR transgene.
Figure 7: Lower expression of SLAMF1 and SLAMF6 in c-Myb-deficient mice.
Figure 8: DP thymocytes that lack c-Myb are unable to support the development of CD1d deficient iNKT cells.

Similar content being viewed by others

References

  1. Gapin, L., Matsuda, J.L., Surh, C.D. & Kronenberg, M. NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat. Immunol. 2, 971–978 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Godfrey, D.I. & Berzins, S.P. Control points in NKT-cell development. Nat. Rev. Immunol. 7, 505–518 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Matsuda, J.L., Mallevaey, T., Scott-Browne, J. & Gapin, L. CD1d-restricted iNKT cells, the 'Swiss-Army knife' of the immune system. Curr. Opin. Immunol. 20, 358–368 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Kronenberg, M. & Engel, I. On the road: progress in finding the unique pathway of invariant NKT cell differentiation. Curr. Opin. Immunol. 19, 186–193 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Krangel, M.S., Carabana, J., Abbarategui, I., Schlimgen, R. & Hawwari, A. Enforcing order within a complex locus: current perspectives on the control of V(D)J recombination at the murine T-cell receptor α/δ locus. Immunol. Rev. 200, 224–232 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Guo, J. et al. Regulation of the TCRα repertoire by the survival window of CD4+CD8+ thymocytes. Nat. Immunol. 3, 469–476 (2002).

    Article  PubMed  Google Scholar 

  8. Egawa, T. et al. Genetic evidence supporting selection of the Vα14i NKT cell lineage from double-positive thymocyte precursors. Immunity 22, 705–716 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Bezbradica, J.S., Hill, T., Stanic, A.K., Van Kaer, L. & Joyce, S. Commitment toward the natural T (iNKT) cell lineage occurs at the CD4+8+ stage of thymic ontogeny. Proc. Natl. Acad. Sci. USA 102, 5114–5119 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Griewank, K. et al. Homotypic interactions mediated by Slamf1 and Slamf6 receptors control NKT cell lineage development. Immunity 27, 751–762 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Borowski, C. & Bendelac, A. Signaling for NKT cell development: the SAP-FynT connection. J. Exp. Med. 201, 833–836 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nichols, K.E. et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat. Med. 11, 340–345 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Pasquier, B. et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J. Exp. Med. 201, 695–701 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chung, B., Aoukaty, A., Dutz, J., Terhorst, C. & Tan, R. Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J. Immunol. 174, 3153–3157 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Eberl, G., Lowin-Kropf, B. & MacDonald, H.R. Cutting edge: NKT cell development is selectively impaired in Fyn-deficient mice. J. Immunol. 163, 4091–4094 (1999).

    CAS  PubMed  Google Scholar 

  16. Gapin, L. The making of NKT cells. Nat. Immunol. 9, 1009–1011 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Williams, J.A. et al. Regulation of thymic NKT cell development by the B7–CD28 costimulatory pathway. J. Immunol. 181, 907–917 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Felices, M. & Berg, L.J. The Tec kinases Itk and Rlk regulate NKT cell maturation, cytokine production, and survival. J. Immunol. 180, 3007–3018 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Matsuda, J.L. et al. Homeostasis of Vα14i NKT cells. Nat. Immunol. 3, 966–974 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Kovalovsky, D. et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9, 1055–1064 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Savage, A.K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 1–13 (2008).

    Article  Google Scholar 

  22. Townsend, M.J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Kim, P.J. et al. GATA-3 regulates the development and function of invariant NKT cells. J. Immunol. 177, 6650–6659 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Dose, M. et al. Intrathymic proliferation wave essential for Vα14+ natural killer T cell development depends on c-Myc. Proc. Natl. Acad. Sci. USA 106, 8641–8646 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mucenski, M.L. et al. A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65, 677–689 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Sakamoto, H. et al. Proper levels of c-Myb are discretely defined at distinct steps of hematopoietic cell development. Blood 108, 896–903 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Greig, K.T., Carotta, S. & Nutt, S.L. Critical roles for c-Myb in hematopoietic progenitor cells. Semin. Immunol. 20, 247–256 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Bender, T.P., Kremer, C.S., Kraus, M., Buch, T. & Rajewsky, K. Critical functions for c-Myb at three checkpoints during thymocyte development. Nat. Immunol. 5, 721–729 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Maurice, D., Hooper, J., Lang, G. & Weston, K. c-Myb regulates lineage choice in developing thymocytes via its target gene Gata3. EMBO J. 26, 3629–3640 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Allen, R.D. III, Bender, T.P. & Siu, G. c-Myb is essential for early T cell development. Genes Dev. 13, 1073–1078 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pearson, R. & Weston, K. c-Myb regulates the proliferation of immature thymocytes following β-selection. EMBO J. 19, 6112–6120 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hernandez-Munain, C., Lauzurica, P. & Krangel, M.S. Regulation of T cell receptor δ gene rearrangement by c-Myb. J. Exp. Med. 183, 289–293 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Hsiang, Y.H., Goldman, J.P. & Raulet, D.H. The role of c-Myb or a related factor in regulating the T cell receptor γ gene enhancer. J. Immunol. 154, 5195–5204 (1995).

    CAS  PubMed  Google Scholar 

  34. Liu, Y. et al. A modified α-galactosyl ceramide for staining and stimulating natural killer T cells. J. Immunol. Methods 312, 34–39 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Benlagha, K., Wei, D.G., Veiga, J., Teyton, L. & Bendelac, A. Characterization of the early stages of thymic NKT cell development. J. Exp. Med. 202, 485–492 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chao, D.T. & Korsmeyer, S.J. BCL-XL-regulated apoptosis in T cell development. Int. Immunol. 9, 1375–1384 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Hossain, M.Z., Yu, Q., Xu, M. & Sen, J.M. ICAT expression disrupts β-catenin-TCF interactions and impairs survival of thymocytes and activated mature T cells. Int. Immunol. 20, 925–935 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Xie, H., Huang, Z., Sadim, M.S. & Sun, Z. Stabilized β-catenin extends thymocyte survival by up-regulating Bcl-xL. J. Immunol. 175, 7981–7988 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Wandstrat, A.E. et al. Association of extensive polymorphisms in the SLAM/CD2 gene cluster with murine lupus. Immunity 21, 769–780 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Jordan, M.A., Fletcher, J.M., Pellicci, D. & Baxter, A.G. Slamf1, the NKT cell control gene Nkt1. J. Immunol. 178, 1618–1627 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Esteban, L.M. et al. Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J. Immunol. 171, 2873–2878 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Berzins, S.P., Cochrane, A.D., Pellicci, D.G., Smyth, M.J. & Godfrey, D. I. Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur. J. Immunol. 35, 1399–1407 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Morel, L., Yu, Y., Blenman, K.R., Caldwell, R.A. & Wakeland, E.K. Production of congenic mouse strains carrying genomic intervals containing SLE-susceptibility genes derived from the SLE-prone NZM2410 strain. Mamm. Genome 7, 335–339 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, Y.H., Chiu, N.M., Mandal, M., Wang, N. & Wang, C.R. Impaired NK1+ T cell development and early IL-4 production in CD1-deficient mice. Immunity 6, 459–467 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Hernandez-Hoyos, G. & Alberola-Ila, J. Analysis of T-cell development by using short interfering RNA to knock down protein expression. Methods Enzymol. 392, 199–217 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Lauritsen, J.P. et al. Egr2 is required for Bcl-2 induction during positive selection. J. Immunol. 181, 7778–7785 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Bendelac (Howard Hughes Medical Institute) for the Vα14-transgenic mice; A. Veillette (Clinical Research Institute, Montreal) for the antibody to SAP; X.-H. Sun (Oklahoma Medical Research Foundation) for the Mig-RORγt vector; M. Lang (University of Oklahoma Health Science Center) for CD1d-deficient- and Jα18-deficient- bone marrow; the National Institutes of Health Tetramer Facility for the CD1d-PBS57 tetramer; and S. Kovats for discussions. Supported by the National Institute of Allergy and Infectious Diseases of the US National Institutes of Health (AI059302 to J.A.-I.), the American Heart Association (0855002F to J.A.-I.), the National Cancer Institute of the National Institutes of Health (CA85842 to T.B.P.) and the Robert R. Wagner Fellowship Fund (J.Y.).

Author information

Authors and Affiliations

Authors

Contributions

T.H. designed the study, did experiments, analyzed data and wrote the manuscript; A.S. did experiments; J.Y and T.P.B. provided experimental mice, data and discussions; and J.A.-I. designed the study, did experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Jose Alberola-Ila.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Supplementary Note (PDF 1101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, T., Simmons, A., Yuan, J. et al. The transcription factor c-Myb primes CD4+CD8+ immature thymocytes for selection into the iNKT lineage. Nat Immunol 11, 435–441 (2010). https://doi.org/10.1038/ni.1865

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1865

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing