Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Mixed results with modulation of TH-17 cells in human autoimmune diseases

Abstract

The outcomes of clinical trials provide the most convincing data to clarify the role of particular cytokines in the pathogenesis of human diseases. The immunology community, for a variety of practical reasons, spends most of its research time and funds on studies in model systems, mainly mice. In this perspective I discuss results of clinical trials assessing the effect of blocking the differentiation and/or function of interleukin-17–producing CD4+ T cells on human autoimmune disease, and devote more limited attention to corroborating preclinical studies from animal models. Thus far, these outcomes in human trials have been mixed, with notable success in psoriasis and Crohn's disease but a negative result in relapsing-remitting multiple sclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-12 p40–specific monoclonal antibodies target both IL-12 (a heterodimer of p40 and p35) and IL-23 (a heterodimer of p40 and p19).

Katie Vicari

Figure 2: Cytokines promoting the differentiation and effector function of TH1 and TH-17 cells in humans.

Katie Vicari

Similar content being viewed by others

References

  1. Feldmann, M. & Steinman, L. Design of effective immunotherapy for human autoimmunity. Nature 435, 612–619 (2005).

    Article  CAS  Google Scholar 

  2. Nishimoto, N. & Kishimoto, T. Humanized antihuman IL-6 receptor antibody, tocilizumab. Handb. Exp. Pharmacol. 181, 151–160 (2008).

    Article  CAS  Google Scholar 

  3. Church, L.D., Cook, G.P. & McDermott, M.F. Primer: inflammosomes and interleukin 1β in inflammatory disorders. Nat. Clin. Pract. Rheumatol. 4, 34–42 (2008).

    Article  CAS  Google Scholar 

  4. Boniface, K., Blom, B., Liu, Y. & Malefyt R.d.W. From interleukin 23 to T-helper 17 cells: human T-helper cell differentiation revisited. Immunol. Rev. 226, 132–146 (2008).

    Article  CAS  Google Scholar 

  5. Steinman, L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell–mediated tissue damage. Nat. Med. 13, 139–145 (2007).

    Article  CAS  Google Scholar 

  6. Billiau, A. et al. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-gamma. J. Immunol. 140, 1506–1510 (1988).

    CAS  PubMed  Google Scholar 

  7. Ferber, I.A. et al. Mice with a disrupted interferon-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol. 156, 5–7 (1996).

    CAS  PubMed  Google Scholar 

  8. Steinman, L. A rush to judgment on Th17. J. Exp. Med. 205, 1517–1522 (2008).

    Article  CAS  Google Scholar 

  9. Kroenke, M.A., Carlson, T.J., Adnjelkovic, A.V. & Segal, B.M. IL12– and IL-23–modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile and response to cytokine inhibition. J. Exp. Med. 205, 1535–1541 (2008).

    Article  CAS  Google Scholar 

  10. Yang, Y. et al. T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. J. Exp. Med. 206, 1549–1564 (2009).

    Article  CAS  Google Scholar 

  11. Lafaille, J.J. et al. Myelin basic protein–specific T helper 2 (Th2) cells cause experimental autoimmune encephalomyelitis in immunodeficient hosts rather than protect them from the disease. J. Exp. Med. 186, 307–312 (1997).

    Article  CAS  Google Scholar 

  12. Annunziato, F. et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 204, 1849–1861 (2007).

    Article  CAS  Google Scholar 

  13. Lock, C. et al. Gene microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508 (2002).

    Article  CAS  Google Scholar 

  14. Li, Y. et al. Increased IL-23p19 expression in multiple sclerosis lesions and its induction in microglia. Brain 130, 490–501 (2007).

    Article  Google Scholar 

  15. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  Google Scholar 

  16. 't Hart, B.A. et al. Suppression of ongoing disease in a nonhuman primate model of multiple sclerosis by a human-anti-human IL-12p40 antibody. J. Immunol. 175, 4761–4768 (2005).

    Article  CAS  Google Scholar 

  17. Segal, B.M. et al. Repeated subcutaneous injections of IL12/23 p40 neutralising antibody, ustekinumab, in patients with relapsing-remitting multiple sclerosis: a phase II, double-blind, placebo-controlled, randomised, dose-ranging study. Lancet Neurol. 7, 796–804 (2008).

    Article  CAS  Google Scholar 

  18. Longbrake, E.E. & Racke M. Why did IL-12/IL-23 antibody therapy fail in multiple sclerosis? Expert Rev. Neurother. 9, 319–321 (2009).

    Article  CAS  Google Scholar 

  19. Steinman, L. Multiple sclerosis: a two-stage disease. Nat. Immunol. 2, 762–765 (2001).

    Article  CAS  Google Scholar 

  20. Steinman, L. Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat. Rev. Drug Discov. 4, 510–518 (2005).

    Article  CAS  Google Scholar 

  21. Polman, C.H. et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354, 899–910 (2006).

    Article  CAS  Google Scholar 

  22. Lenercept Multiple Sclerosis Study Group & University of British Columbia MS/MRI Analysis Group. TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. Neurology 53, 457–465 (1999).

  23. van Oosten, B.W. et al. Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal antitumor necrosis factor antibody cA2. Neurology 47, 1531–1534 (1996).

    Article  CAS  Google Scholar 

  24. Krueger, G.G. et al. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N. Engl. J. Med. 356, 580–592 (2007).

    Article  CAS  Google Scholar 

  25. Kimball, A.B. et al. Safety and efficacy of ABT-874, a fully human interleukin 12/23 monoclonal antibody, in the treatment of moderate to severe chronic plaque psoriasis. Results of a randomized, placebo-controlled, phase 2 trial. Arch. Dermatol. 144, 200–207 (2008).

    Article  CAS  Google Scholar 

  26. Chan, J.R. et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med. 203, 2577–2587 (2006).

    Article  CAS  Google Scholar 

  27. Lee, E. et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med. 199, 125–130 (2004).

    Article  CAS  Google Scholar 

  28. Capon, F. et al. Sequence variants in the genes for the interleukin-23 receptor (IL23R) and its ligand (IL12B) confer protection against psoriasis. Hum. Genet. 122, 201–206 (2007).

    Article  CAS  Google Scholar 

  29. Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80, 273–290 (2007).

    Article  CAS  Google Scholar 

  30. Duerr, R.H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  Google Scholar 

  31. Holtta, V. et al. IL-23/IL-17 immunity as a hallmark of Crohn's disease. Inflamm. Bowel Dis. 14, 1175–1184 (2008).

    Article  Google Scholar 

  32. Pene, J. et al. Chronically inflamed tissues are infiltrated by highly differentiated TH17 lymphocytes. J. Immunol. 180, 7423–7430 (2008).

    Article  CAS  Google Scholar 

  33. Mannon, P.J. et al. Anti–interleukin-12 antibody for active Crohn's disease. N. Engl. J. Med. 351, 2069–2079 (2004).

    Article  CAS  Google Scholar 

  34. Sandborn, W.J. et al. A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn's disease. Gastroenterology 135, 1130–1141 (2008).

    Article  CAS  Google Scholar 

  35. Genovese, M.C., Van den Bosch, F., Roberson, S.A. & Sloan-Lancaster, J. Safety, tolerability and evidence of efficacy of intravenous LY2439821 in patients with rheumatoid arthritis receiving background oral DMARDs. Ann. Rheum. Dis. 68 (suppl. 3), abstract OP-1060 (2009).

  36. Durez, P. et al. AIN457, an anti-IL-17 antibody, shows good safety and induces clinical responses in patients with active rheumatoid arthritis (RA) despite methotrexate therapy in a randomized, double-blind proof-of-concept trial. Ann. Rheum. Dis. 68 (suppl. 3), abstract LB002 (2009).

  37. Panitch, H.S., Hirsch, R.L., Schindler, J. & Johnson, K.P. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37, 1097–1102 (1987).

    Article  CAS  Google Scholar 

  38. Platten, M. et al. Blocking angiotensin converting enzyme induces potent regulatory T cells and modulates TH1 and TH17-mediated autoimmunity. Proc. Natl. Acad. Sci. USA 106, 14948–14953 (2009).

    Article  CAS  Google Scholar 

  39. Stegbauer, J. et al. Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system. Proc. Natl. Acad. Sci. USA 106, 14942–14947 (2009); doi:10.1073/pnas.0903602106.

    Article  PubMed  Google Scholar 

  40. Schulze-Topphoff, U. et al. Activation of kinin receptor B1 limits encephalitogenic T lymphocyte recruitment to the central nervous system. Nat. Med. 15, 788–793 (2009).

    Article  CAS  Google Scholar 

  41. Steinman, L. A molecular trio in relapse and remission for multiple sclerosis. Nat. Rev. Immunol. 9, 440–447 (2009).

    Article  CAS  Google Scholar 

  42. Molloy, E.S. & Calabrese, L. Therapy targeted but not trouble free: efalizumab and PML. Nat. Rev. Rheumatol. 5, 418–419 (2009).

    Article  CAS  Google Scholar 

  43. Han, M.H. et al. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451, 1076–1081 (2008).

    Article  CAS  Google Scholar 

  44. Yao, C. et al. Prostaglandin E2–EP4 signaling promotes immune inflammation through TH1 cell differentiation and TH17 cell expansion. Nat. Med. 15, 633–641 (2009).

    Article  CAS  Google Scholar 

  45. Shinohara, M.L., Kim, J.-H., Garcia, V.A. & Cantor, H. Engagement of the type I interferon receptor on dendritic cells inhibits promotion of Th17 cells: role of intracellular osteopontin. Immunity 29, 68–78 (2008).

    Article  CAS  Google Scholar 

  46. Murugaiyan, G., Mittal, A. & Weiner, H.L. Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J. Immunol. 181, 7480–7488 (2008).

    Article  CAS  Google Scholar 

  47. Vogt, M.H., Lopatinskaya, L., Smits, M., Polman, C.H. & Nagelkerken, L. Elevated osteopontin levels in active relapsing-remitting multiple sclerosis. Ann. Neurol. 53, 819–822 (2003).

    Article  CAS  Google Scholar 

  48. Comabella, M. et al. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol. 158, 231–239 (2005).

    Article  CAS  Google Scholar 

  49. Hur, E. et al. Osteopontin induced relapse and progression of autoimmune brain disease via enhanced survival of activated T cells. Nat. Immunol. 8, 74–83 (2007).

    Article  CAS  Google Scholar 

  50. Chen, M. Regulatory effects of interferon-beta on production of osteopontin and IL-17 in CD4 T cells in multiple sclerosis. Eur. J. Immunol. 39, 2525–2536 (2009).

    Article  CAS  Google Scholar 

  51. Steinman, L. Shifting therapeutic attention in multiple sclerosis to osteopontin, type 1 and type 2 IFN. Eur. J. Immunol. 39, 2358–2360 (2009).

    Article  CAS  Google Scholar 

  52. Gaffen, S.L. Structure and signalling in the IL-17 receptor family. Nat. Rev. Immunol. 9, 556–567 (2009).

    Article  CAS  Google Scholar 

  53. Bettelli, E., Oukka, M. & Kuchroo, V.K. TH-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 8, 345–350 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence Steinman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinman, L. Mixed results with modulation of TH-17 cells in human autoimmune diseases. Nat Immunol 11, 41–44 (2010). https://doi.org/10.1038/ni.1803

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing