Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection

A Corrigendum to this article was published on 01 January 2010

This article has been updated

Abstract

T cell antigen receptor (TCR) signaling in CD4+CD8+ double-positive thymocytes determines cell survival and lineage commitment, but the genetic and molecular basis of this process is poorly defined. To address this issue, we used ethylnitrosourea mutagenesis to identify a previously unknown T lineage–specific gene, Themis, which is critical for the completion of positive selection. Themis contains a tandem repeat of a unique globular domain (called 'CABIT' here) that includes a cysteine motif that defines a family of five uncharacterized vertebrate proteins with orthologs in most animal species. Themis-deficient thymocytes showed no substantial impairment in early TCR signaling but did show altered expression of genes involved in the cell cycle and survival before and during positive selection. Our data suggest a unique function for Themis in sustaining positive selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lower production of CD4+ and CD8+ T cells in 5AT161 mutant mice.
Figure 2: Impaired positive selection in TCR-transgenic 5AT161 mice and normal superantigen negative selection in B10.BR 5AT161 mice.
Figure 3: Induced premature stop codon encoded by Themis in 5AT161 mice.
Figure 4: Domain architectures and evolution of the CABIT domain.
Figure 5: Themis expression.
Figure 6: Normal TCR-driven upregulation of activation markers and lower expression of development markers in Themis-mutant DP thymocytes.
Figure 7: Altered expression of survival, cell cycle and lipid metabolism genes in Themis(Y489X) thymocytes.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Change history

  • 19 August 2009

    NOTE: In the version of this article initially published, the top right graph in Fig. 7b is incorrect. The error has been corrected in the HTML and PDF versions of the article.

References

  1. He, X. et al. The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433, 826–833 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Hughes, P., Bouillet, P. & Strasser, A. Role of Bim and other Bcl-2 family members in autoimmune and degenerative diseases. Curr. Dir. Autoimmun. 9, 74–94 (2006).

    CAS  PubMed  Google Scholar 

  3. Mitchell, B.S. & Kelley, W.N. Purinogenic immunodeficiency diseases: clinical features and molecular mechanisms. Ann. Intern. Med. 92, 826–831 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Siggs, O.M. et al. Opposing functions of the T cell receptor kinase ZAP-70 in immunity and tolerance differentially titrate in response to nucleotide substitutions. Immunity 27, 912–926 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taniuchi, I. & Littman, D.R. Epigenetic gene silencing by Runx proteins. Oncogene 23, 4341–4345 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Weerkamp, F., van Dongen, J.J. & Staal, F.J. Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 20, 1197–1205 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Germain, R.N. T-cell development and the CD4–CD8 lineage decision. Nat. Rev. Immunol. 2, 309–322 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Hernandez-Hoyos, G., Sohn, S.J., Rothenberg, E.V. & Alberola-Ila, J. Lck activity controls CD4/CD8 T cell lineage commitment. Immunity 12, 313–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Kappes, D.J. & He, X. CD4–CD8 lineage commitment: an inside view. Nat. Immunol. 6, 761–766 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Vinuesa, C.G. & Goodnow, C.C. Illuminating autoimmune regulators through controlled variation of the mouse genome sequence. Immunity 20, 669–679 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Terrence, K., Pavlovich, C.P., Matechak, E.O. & Fowlkes, B.J. Premature expression of T cell receptor (TCR)αβ suppresses TCRγδ gene rearrangement but permits development of δγ lineage T cells. J. Exp. Med. 192, 537–548 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jimi, E., Strickland, I., Voll, R.E., Long, M. & Ghosh, S. Differential role of the transcription factor NF-κB in selection and survival of CD4+ and CD8+ thymocytes. Immunity 29, 523–537 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kisielow, P., Bluthmann, H., Staerz, U.D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Woodland, D., Happ, M.P., Bill, J. & Palmer, E. Requirement for cotolerogenic gene products in the clonal deletion of I-E reactive T cells. Science 247, 964–967 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Cook, M.C., Vinuesa, C.G. & Goodnow, C.C. ENU-mutagenesis: insight into immune function and pathology. Curr. Opin. Immunol. 18, 627–633 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Lesourne, R. Themis, a T cell–specific protein important for late thymocyte development. Nat. Immunol. advance online publication doi:10.1038/ni1768 (13 July 2009).

  17. Fu, G. et al. Themis controls thymocyte selection through regulation of T cell antigen receptor–mediated signaling. Nat. Immunol. advance online publication doi:10.1038/ni1766 (13 July 2009).

  18. Fontenot, J.D., Rasmussen, J.P., Gavin, M.A. & Rudensky, A.Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Hill, J.A. et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27, 786–800 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Marson, A. et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445, 931–935 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Burack, W.R., Cheng, A.M. & Shaw, A.S. Scaffolds, adaptors and linkers of TCR signaling: theory and practice. Curr. Opin. Immunol. 14, 312–316 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Cary, L.A. & Guan, J.L. Focal adhesion kinase in integrin-mediated signaling. Front. Biosci. 4, D102–D113 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Margolis, B. & Skolnik, E.Y. Activation of Ras by receptor tyrosine kinases. J. Am. Soc. Nephrol. 5, 1288–1299 (1994).

    CAS  PubMed  Google Scholar 

  24. Lucas, B. & Germain, R.N. Unexpectedly complex regulation of CD4/CD8 coreceptor expression supports a revised model for CD4+CD8+ thymocyte differentiation. Immunity 5, 461–477 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Liston, A., Lesage, S., Gray, D.H., Boyd, R.L. & Goodnow, C.C. Genetic lesions in T-cell tolerance and thresholds for autoimmunity. Immunol. Rev. 204, 87–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Tsukamoto, H. et al. B-Raf-mediated signaling pathway regulates T cell development. Eur. J. Immunol. 38, 518–527 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Geiman, T.M. & Muegge, K. Lsh, an SNF2/helicase family member, is required for proliferation of mature T lymphocytes. Proc. Natl. Acad. Sci. USA 97, 4772–4777 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Okada, H. et al. Survivin loss in thymocytes triggers p53-mediated growth arrest and p53-independent cell death. J. Exp. Med. 199, 399–410 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xing, Z., Conway, E.M., Kang, C. & Winoto, A. Essential role of survivin, an inhibitor of apoptosis protein, in T cell development, maturation, and homeostasis. J. Exp. Med. 199, 69–80 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bensinger, S.J. et al. LXR signaling couples sterol metabolism to proliferation in the acquired immune response. Cell 134, 97–111 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gallo, E.M. et al. Calcineurin sets the bandwidth for discrimination of signals during thymocyte development. Nature 450, 731–735 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lee, M.S., Hanspers, K., Barker, C.S., Korn, A.P. & McCune, J.M. Gene expression profiles during human CD4+ T cell differentiation. Int. Immunol. 16, 1109–1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Kose, H. et al. Maturational arrest of thymocyte development is caused by a deletion in the receptor-like protein tyrosine phosphatase κ gene in LEC rats. Genomics 89, 673–677 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Asano, A., Tsubomatsu, K., Jung, C.G., Sasaki, N. & Agui, T. A deletion mutation of the protein tyrosine phosphatase κ (Ptprk) gene is responsible for T-helper immunodeficiency (thid) in the LEC rat. Mamm. Genome 18, 779–786 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Flavell, J.R. et al. Down-regulation of the TGF-β target gene, PTPRK, by the Epstein-Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood 111, 292–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Nakamura, M. et al. Novel tumor suppressor loci on 6q22–23 in primary central nervous system lymphomas. Cancer Res. 63, 737–741 (2003).

    CAS  PubMed  Google Scholar 

  37. Wang, S.E., Wu, F.Y., Shin, I., Qu, S. & Arteaga, C.L. Transforming growth factor β (TGF-β)-Smad target gene protein tyrosine phosphatase receptor type κ is required for TGF-β function. Mol. Cell. Biol. 25, 4703–4715 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, Y. et al. Transforming growth factor-β1 inhibits human keratinocyte proliferation by upregulation of a receptor-type tyrosine phosphatase R-PTP-κ gene expression. Biochem. Biophys. Res. Commun. 228, 807–812 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Treeck, O. et al. Detection of increased icb-1 transcript levels in maturing HL-60 cells: a novel marker for granulocytic and monocytic in vitro differentiation. Leuk. Res. 26, 765–769 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Treeck, O., Kindzorra, I., Pauser, K., Treeck, L. & Ortmann, O. Expression of Icb-1 gene is interferon-γ inducible in breast and ovarian cancer cell lines and affects the IFN γ-response of SK-OV-3 ovarian cancer cells. Cytokine 32, 137–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Jun, J.E. et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18, 751–762 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Ho, W.Y., Cooke, M.P., Goodnow, C.C. & Davis, M.M. Resting and anergic B cells are defective in CD28-dependent costimulation of naive CD4+ T cells. J. Exp. Med. 179, 1539–1549 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Tanchot, C., Barber, D.L., Chiodetti, L. & Schwartz, R.H. Adaptive tolerance of CD4+ T cells in vivo: multiple thresholds in response to a constant level of antigen presentation. J. Immunol. 167, 2030–2039 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Huesmann, M., Scott, B., Kisielow, P. & von Boehmer, H. Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 66, 533–540 (1991).

    CAS  PubMed  Google Scholar 

  45. Silver, K.L. et al. MyD88-dependent autoimmune disease in Lyn-deficient mice. Eur. J. Immunol. 37, 2734–2743 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Cornall, R.J. et al. Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signalling and selection. Immunity 8, 497–508 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Wan, F. et al. Ribosomal protein S3: a KH domain subunit in NF-κB complexes that mediates selective gene regulation. Cell 131, 927–939 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Schaupp, C.J., Jiang, G., Myers, T.G. & Wilson, M.A. Active mixing during hybridization improves the accuracy and reproducibility of microarray results. Biotechniques 38, 117–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Saeed, A.I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Holmes, E. Stregevsky and B. Hague for flow sorting; D.E. Anderson for mass spectrometry; T. Myers and Q. Su for assistance with microarrays; and the staffs of the Australian Phenomics Facility, Biomedical Services Oxford, and the US National Institutes of Health Comparative Medicine Branch for animal husbandry. Supported by the US National Institutes of Health (A.L.J.); Oxford University (A.L.J.); The Division of Intramural Research, National Institute of Allergy and Infectious Diseases (R.H.S. and M.J.L.) and National Library of Medicine (L.A.), US National Institutes of Health; the Medical Research Council (R.J.C.); the Wellcome Trust (R.J.C. and C.C.G.); the Australian Research Council Federation (C.C.G.); and the National Institute for Health Research Biomedical Research Centre Programme (R.J.C.).

Author information

Authors and Affiliations

Authors

Contributions

A.L.J. designed and did experiments, analyzed and interpreted results and wrote the manuscript; L.A. did the bioinformatics analysis and designed the related figures and text; N.S. and A.M. assisted with microarray experimental design and analysis; S.-Y.C. did the GST precipitation and some of the biochemical analyses by immunoblot; T.L.C. and T.L. contributed to ex vivo cellular analyses, tissue culture and gene mapping; H.D. and E.M.K. did the immunization and ANA screens; L.Z. contributed to cloning, confocal microscopy and immunoprecipitation studies; C.G.V., M.J.L. and C.C.G. helped with designing experiments and writing the manuscript; and R.J.C. and R.H.S. directed the study, analyzed and interpreted results and wrote the manuscript.

Corresponding authors

Correspondence to Richard J Cornall or Ronald H Schwartz.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Table 1 (PDF 4378 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, A., Aravind, L., Shulzhenko, N. et al. Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. Nat Immunol 10, 831–839 (2009). https://doi.org/10.1038/ni.1769

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing