Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor–intrinsic costimulation to class-switched B cells

Abstract

The improved antibody responses of class-switched memory B cells depend on enhanced signaling from their B cell antigen receptors (BCRs). However, BCRs on both naive and antigen-experienced B cells use the canonical immunoglobulin-associated α and β-protein signaling subunits. Here we identified a BCR isotype–specific signal-amplification mechanism. Whereas immunoglobulin M (IgM)-containing BCRs initiated intracellular signals exclusively through immunoglobulin-associated α- and β-proteins, IgG- and IgE-containing BCRs also used a conserved tyrosine residue in the cytoplasmic segments of immunoglobulin heavy chains. When phosphorylated, this tyrosine recruited the adaptor Grb2, resulting in sustained protein kinase activation and prolonged generation of second messengers, which together culminated in enhanced B cell proliferation. Hence, membrane-bound IgG and IgE exert antigen recognition as well as costimulatory functions, thereby rendering memory B cells less dependent on T cell help.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ITT of γ2am is a target of protein kinases.
Figure 2: ITT phosphorylation of γ2am improves the activation of BCR-proximal signal effectors.
Figure 3: Tyrosine phosphorylation of γ2am potentiates Ca2+ mobilization.
Figure 4: ITT phosphorylation distinguishes IgG-BCR from IgM-BCR signaling.
Figure 5: Specific and exclusive association of phospho-γ2am with Grb2.
Figure 6: Grb2 recruitment is critical for the IgG-BCR-induced proliferative burst.
Figure 7: The IgE-BCR uses ITT-mediated signal amplification.
Figure 8: ITT signal amplification relies on BCR integration.

Similar content being viewed by others

References

  1. Reth, M. Antigen receptors on B lymphocytes. Annu. Rev. Immunol. 10, 97–121 (1992).

    Article  CAS  Google Scholar 

  2. Honjo, T., Kinoshita, K. & Muramatsu, M. Molecular mechanism of class switch recombination: linkage with somatic hypermutation. Annu. Rev. Immunol. 20, 165–196 (2002).

    Article  CAS  Google Scholar 

  3. Kaisho, T., Schwenk, F. & Rajewsky, K. The roles of γ1 heavy chain membrane expression and cytoplasmic tail in IgG1 responses. Science 276, 412–415 (1997).

    Article  CAS  Google Scholar 

  4. Martin, S.W. & Goodnow, C.C. Burst-enhancing role of the IgG membrane tail as a molecular determinant of memory. Nat. Immunol. 3, 182–188 (2002).

    Article  CAS  Google Scholar 

  5. Achatz, G., Nitschke, L. & Lamers, M.C. Effect of transmembrane and cytoplasmic domains of IgE on the IgE response. Science 276, 409–411 (1997).

    Article  CAS  Google Scholar 

  6. Klinman, N.R. & Doughty, R.A. Hapten-specific stimulation of secondary B cells independent of T cells. J. Exp. Med. 138, 473–478 (1973).

    Article  CAS  Google Scholar 

  7. Hebeis, B.J. et al. Activation of virus-specific memory B cells in the absence of T cell help. J. Exp. Med. 199, 593–602 (2004).

    Article  CAS  Google Scholar 

  8. Schamel, W.W. & Reth, M. Monomeric and oligomeric complexes of the B cell antigen receptor. Immunity 13, 5–14 (2000).

    Article  CAS  Google Scholar 

  9. Venkitaraman, A.R., Williams, G.T., Dariavach, P. & Neuberger, M.S. The B-cell antigen receptor of the five immunoglobulin classes. Nature 352, 777–781 (1991).

    Article  CAS  Google Scholar 

  10. Reth, M. Antigen receptor tail clue. Nature 338, 383–384 (1989).

    Article  CAS  Google Scholar 

  11. Rolli, V. et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell 10, 1057–1069 (2002).

    Article  CAS  Google Scholar 

  12. Engelke, M., Engels, N., Dittmann, K., Stork, B. & Wienands, J. Ca2+ signaling in antigen receptor-activated B lymphocytes. Immunol. Rev. 218, 235–246 (2007).

    Article  CAS  Google Scholar 

  13. Engels, N., Wollscheid, B. & Wienands, J. Association of SLP-65/BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Ig-α. Eur. J. Immunol. 31, 2126–2134 (2001).

    Article  CAS  Google Scholar 

  14. Patterson, H.C., Kraus, M., Kim, Y.M., Ploegh, H. & Rajewsky, K. The B cell receptor promotes B cell activation and proliferation through a non-ITAM tyrosine in the Igα cytoplasmic domain. Immunity 25, 55–65 (2006).

    Article  CAS  Google Scholar 

  15. Horikawa, K. et al. Enhancement and suppression of signaling by the conserved tail of IgG memory-type B cell antigen receptors. J. Exp. Med. 204, 759–769 (2007).

    Article  CAS  Google Scholar 

  16. Waisman, A. et al. IgG1 B cell receptor signaling is inhibited by CD22 and promotes the development of B cells whose survival is less dependent on Ig α/β. J. Exp. Med. 204, 747–758 (2007).

    Article  CAS  Google Scholar 

  17. Knight, A.M., Lucocq, J.M., Prescott, A.R., Ponnambalam, S. & Watts, C. Antigen endocytosis and presentation mediated by human membrane IgG1 in the absence of the Igα/Igβ dimer. EMBO J. 16, 3842–3850 (1997).

    Article  CAS  Google Scholar 

  18. Bonnerot, C. et al. Role of B cell receptor Igα and Igβ subunits in MHC class II-restricted antigen presentation. Immunity 3, 335–347 (1995).

    Article  CAS  Google Scholar 

  19. Gazumyan, A., Reichlin, A. & Nussenzweig, M.C. Igβ tyrosine residues contribute to the control of B cell receptor signaling by regulating receptor internalization. J. Exp. Med. 203, 1785–1794 (2006).

    Article  CAS  Google Scholar 

  20. Pages, F. et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369, 327–329 (1994).

    Article  CAS  Google Scholar 

  21. Prasad, K.V. et al. T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif. Proc. Natl. Acad. Sci. USA 91, 2834–2838 (1994).

    Article  CAS  Google Scholar 

  22. Flaswinkel, H. & Reth, M. Dual role of the tyrosine activation motif of the Ig-α protein during signal transduction via the B cell antigen receptor. EMBO J. 13, 83–89 (1994).

    Article  CAS  Google Scholar 

  23. Justement, L.B., Wienands, J., Hombach, J., Reth, M. & Cambier, J.C. Membrane IgM and IgD molecules fail to transduce Ca2+ mobilizing signals when expressed on differentiated B lineage cells. J. Immunol. 144, 3272–3280 (1990).

    CAS  PubMed  Google Scholar 

  24. Kim, K.M., Alber, G., Weiser, P. & Reth, M. Differential signaling through the Ig-α and Ig-β components of the B cell antigen receptor. Eur. J. Immunol. 23, 911–916 (1993).

    Article  CAS  Google Scholar 

  25. Wakabayashi, C., Adachi, T., Wienands, J. & Tsubata, T. A distinct signaling pathway used by the IgG-containing B cell antigen receptor. Science 298, 2392–2395 (2002).

    Article  CAS  Google Scholar 

  26. Wienands, J., Hombach, J., Radbruch, A., Riesterer, C. & Reth, M. Molecular components of the B cell antigen receptor complex of class IgD differ partly from those of IgM. EMBO J. 9, 449–455 (1990).

    Article  CAS  Google Scholar 

  27. Acuto, O. & Michel, F. CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat. Rev. Immunol. 3, 939–951 (2003).

    Article  CAS  Google Scholar 

  28. Crooks, M.E. et al. CD28-mediated costimulation in the absence of phosphatidylinositol 3-kinase association and activation. Mol. Cell. Biol. 15, 6820–6828 (1995).

    Article  CAS  Google Scholar 

  29. Dennehy, K.M. et al. Mitogenic CD28 signals require the exchange factor Vav1 to enhance TCR signaling at the SLP-76-Vav-Itk signalosome. J. Immunol. 178, 1363–1371 (2007).

    Article  CAS  Google Scholar 

  30. Kim, H.H., Tharayil, M. & Rudd, C.E. Growth factor receptor-bound protein 2 SH2/SH3 domain binding to CD28 and its role in co-signaling. J. Biol. Chem. 273, 296–301 (1998).

    Article  CAS  Google Scholar 

  31. Kessels, H.W., Ward, A.C. & Schumacher, T.N. Specificity and affinity motifs for Grb2 SH2-ligand interactions. Proc. Natl. Acad. Sci. USA 99, 8524–8529 (2002).

    Article  CAS  Google Scholar 

  32. Harada, Y. et al. A single amino acid alteration in cytoplasmic domain determines IL-2 promoter activation by ligation of CD28 but not inducible costimulator (ICOS). J. Exp. Med. 197, 257–262 (2003).

    Article  Google Scholar 

  33. Suntharalingam, G. et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  Google Scholar 

  34. Waibler, Z. et al. Signaling signatures and functional properties of anti-human CD28 superagonistic antibodies. PLoS ONE 3, e1708 (2008).

    Article  Google Scholar 

  35. Fu, C. & Chan, A.C. Identification of two tyrosine phosphoproteins, pp70 and pp68, which interact with phospholipase Cγ, Grb2, and Vav after B cell antigen receptor activation. J. Biol. Chem. 272, 27362–27368 (1997).

    Article  CAS  Google Scholar 

  36. Grabbe, A. & Wienands, J. Human SLP-65 isoforms contribute differently to activation and apoptosis of B lymphocytes. Blood 108, 3761–3768 (2006).

    Article  CAS  Google Scholar 

  37. Stork, B. et al. Grb2 and the non-T cell activation linker NTAL constitute a Ca2+-regulating signal circuit in B lymphocytes. Immunity 21, 681–691 (2004).

    Article  CAS  Google Scholar 

  38. Stork, B. et al. Subcellular localization of Grb2 by the adaptor protein Dok-3 restricts the intensity of Ca2+ signaling in B cells. EMBO J. 26, 1140–1149 (2007).

    Article  CAS  Google Scholar 

  39. Tolar, P., Sohn, H.W. & Pierce, S.K. The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat. Immunol. 6, 1168–1176 (2005).

    Article  CAS  Google Scholar 

  40. Baba, Y. et al. Coupling of STIM1 to store-operated Ca2+ entry through its constitutive and inducible movement in the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 103, 16704–16709 (2006).

    Article  CAS  Google Scholar 

  41. Huang, G.N. et al. STIM1 carboxyl-terminus activates native SOC, Icrac and TRPC1 channels. Nat. Cell Biol. 8, 1003–1010 (2006).

    CAS  Google Scholar 

  42. Zhang, S.L. et al. STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437, 902–905 (2005).

    Article  CAS  Google Scholar 

  43. Dellis, O. et al. Ca2+ entry through plasma membrane IP3 receptors. Science 313, 229–233 (2006).

    Article  CAS  Google Scholar 

  44. Dellis, O., Rossi, A.M., Dedos, S.G. & Taylor, C.W. Counting functional inositol 1,4,5-trisphosphate receptors into the plasma membrane. J. Biol. Chem. 283, 751–755 (2008).

    Article  CAS  Google Scholar 

  45. Hofmann, T. et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397, 259–263 (1999).

    Article  CAS  Google Scholar 

  46. Putney, J.W. Jr. Inositol lipids and TRPC channel activation. Biochem. Soc. Symp. 74, 37–45 (2007).

    Article  CAS  Google Scholar 

  47. Hikida, M. et al. PLC-γ2 is essential for formation and maintenance of memory B cells. J. Exp. Med. 206, 681–689 (2009).

    Article  CAS  Google Scholar 

  48. Takahashi, Y. et al. Novel role of the Ras cascade in memory B cell response. Immunity 23, 127–138 (2005).

    Article  CAS  Google Scholar 

  49. Ehrlich, P. On immunity with special reference to cell life. Proc. Roy. Soc. Lond. 66, 424–448 (1900).

    Article  CAS  Google Scholar 

  50. Horejsi, V. et al. Monoclonal antibodies against human leucocyte antigens. I. Antibodies against β-2-microglobulin, immunoglobulin κ light chains, HLA-DR-like antigens, T8 antigen, T1 antigen, a monocyte antigen, and a pan-leucocyte antigen. Folia Biol. (Praha) 32, 12–25 (1986).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Adachi (Tokyo Medical and Dental University), V. Horejsi (Charles University), L. Nitschke (Friedrich-Alexander-University Erlangen, Germany), M. Reth (Max-Planck-Institute of Immunobiology), B. Schraven (Otto-von-Guericke-University) and E. Vigorito (Babraham Institute) for reagents; W. Schuh and H.M. Jäck for assistance with retroviral transduction of primary B cells; and H. Scherer for cell sorting. Supported by the Deutsche Forschungsgemeinschaft (FOR 521), the European Community (PADnet) and the Medical Faculty of Göttingen University.

Author information

Authors and Affiliations

Authors

Contributions

N.E. designed, did and supervised experiments and wrote the paper; L.M.K. designed and did experiments; C.H., J.L., S.G. and V.S. did experiments; T.T. provided essential reagents; and J.W. supervised the project and wrote the paper.

Corresponding author

Correspondence to Jürgen Wienands.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Methods (PDF 1499 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engels, N., König, L., Heemann, C. et al. Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor–intrinsic costimulation to class-switched B cells. Nat Immunol 10, 1018–1025 (2009). https://doi.org/10.1038/ni.1764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing