Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes

Abstract

Granule-mediated cytotoxicity is the main effector mechanism of cytotoxic CD8+ T cells. We report that CD8+ T cells from acid sphingomyelinase (ASMase)-deficient (ASMase-KO) mice are defective in exocytosis of cytolytic effector molecules; this defect resulted in attenuated cytotoxic activity of ASMase-KO CD8+ T cells and delayed elimination of lymphocytic choriomeningitis virus from ASMase-KO mice. Cytolytic granules of ASMase-KO and wild-type CD8+ T cells were equally loaded with granzymes and perforin, and correctly directed to the immunological synapse. In wild-type CD8+ T cells, secretory granules underwent shrinkage by 82% after fusion with the plasma membrane. In ASMase-KO CD8+ T cells, the contraction of secretory granules was markedly impaired. Thus, ASMase is required for contraction of secretory granules and expulsion of cytotoxic effector molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reduced T cell-mediated LCMV-specific immune responses in ASMase-KO mice.
Figure 2: ASMase-KO CD8+ T cell perforin-mediated cytotoxicity is impaired.
Figure 3: Reduced release of cytotoxic effector molecules by ASMase-KO CD8+ T cells.
Figure 4: Intracellular localization of ASMase, gzmA, Lamp1 and RANTES in LCMV-specific CD8+ CTLs.
Figure 5: Proper polarization and fusion of cytotoxic granules at the immunological synapse in ASMase-KO CD8+ CTLs.
Figure 6: Identical secretion of fluorescent dextran molecules from cytotoxic granules of ASMase-KO and wild-type (WT) CD8+ T lymphocytes.
Figure 7: Impaired exocytosis of cytotoxic granules by ASMase-KO CD8+ T cells.
Figure 8: Impaired contraction of cytotoxic granules fused to the plasma membrane in ASMase-KO CD8+ T cells.

Similar content being viewed by others

References

  1. Stinchcombe, J.C. & Griffiths, G.M. Secretory mechanisms in cell-mediated cytotoxicity. Annu. Rev. Cell Dev. Biol. 23, 495–517 (2007).

    Article  CAS  Google Scholar 

  2. Henkart, P.A., Williams, M.S., Zacharchuk, C.M. & Sarin, A. Do CTL kill target cells by inducing apoptosis? Semin. Immunol. 9, 135–144 (1997).

    Article  CAS  Google Scholar 

  3. Peters, P.J. et al. Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes. J. Exp. Med. 173, 1099–1109 (1991).

    Article  CAS  Google Scholar 

  4. Raja, S.M., Metkar, S.S. & Froelich, C.J. Cytotoxic granule-mediated apoptosis: unraveling the complex mechanism. Curr. Opin. Immunol. 15, 528–532 (2003).

    Article  CAS  Google Scholar 

  5. Clark, R.H. et al. Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse. Nat. Immunol. 4, 1111–1120 (2003).

    Article  CAS  Google Scholar 

  6. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  Google Scholar 

  7. Haddad, E.K., Wu, X., Hammer, J.A. III & Henkart, P.A. Defective granule exocytosis in Rab27a-deficient lymphocytes from Ashen mice. J. Cell Biol. 152, 835–842 (2001).

    Article  CAS  Google Scholar 

  8. Ménasché, G. et al. Mutations in RAB27A cause Griscelli syndrome associated with haemophagocytic syndrome. Nat. Genet. 25, 173–176 (2000).

    Article  Google Scholar 

  9. Jahn, R., Lang, T. & Sudhof, T.C. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  Google Scholar 

  10. Feldmann, J. et al. Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3). Cell 115, 461–473 (2003).

    Article  CAS  Google Scholar 

  11. Menager, M.M. et al. Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4. Nat. Immunol. 8, 257–267 (2007).

    Article  CAS  Google Scholar 

  12. Chernomordik, L.V. & Kozlov, M.M. Protein-lipid interplay in fusion and fission of biological membranes. Annu. Rev. Biochem. 72, 175–207 (2003).

    Article  CAS  Google Scholar 

  13. Holopainen, J.M., Subramanian, M. & Kinnunen, P.K. Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry 37, 17562–17570 (1998).

    Article  CAS  Google Scholar 

  14. Krönke, M. Biophysics of ceramide signaling: interaction with proteins and phase transition of membranes. Chem. Phys. Lipids 101, 109–121 (1999).

    Article  Google Scholar 

  15. Goni, F.M. & Alonso, A. Sphingomyelinases: enzymology and membrane activity. FEBS Lett. 531, 38–46 (2002).

    Article  CAS  Google Scholar 

  16. Bollinger, C.R., Teichgraber, V. & Gulbins, E. Ceramide-enriched membrane domains. Biochim. Biophys. Acta 1746, 284–294 (2005).

    Article  CAS  Google Scholar 

  17. Merrill, A.H. Jr. & Jones, D.D. An update of the enzymology and regulation of sphingomyelin metabolism. Biochim. Biophys. Acta 1044, 1–12 (1990).

    Article  CAS  Google Scholar 

  18. Schissel, S.L., Keesler, G.A., Schuchman, E.H., Williams, K.J. & Tabas, I. The cellular trafficking and zinc dependence of secretory and lysosomal sphingomyelinase, two products of the acid sphingomyelinase gene. J. Biol. Chem. 273, 18250–18259 (1998).

    Article  CAS  Google Scholar 

  19. Futerman, A.H. & Riezman, H. The ins and outs of sphingolipid synthesis. Trends Cell Biol. 15, 312–318 (2005).

    Article  CAS  Google Scholar 

  20. Holthuis, J.C. & Levine, T.P. Lipid traffic: floppy drives and a superhighway. Nat. Rev. Mol. Cell Biol. 6, 209–220 (2005).

    Article  CAS  Google Scholar 

  21. Holopainen, J.M., Angelova, M.I. & Kinnunen, P.K. Vectorial budding of vesicles by asymmetrical enzymatic formation of ceramide in giant liposomes. Biophys. J. 78, 830–838 (2000).

    Article  CAS  Google Scholar 

  22. Lehmann-Grube, F., Assmann, U., Löliger, C., Moskophidis, D. & Löhler, J. Mechanism of recovery from acute virus infection. I. Role of T lymphocytes in the clearance of lymphocytic choriomeningitis virus from spleens of mice. J. Immunol. 134, 608–615 (1985).

    CAS  PubMed  Google Scholar 

  23. Moskophidis, D. & Lehmann-Grube, F. Virus-induced delayed-type hypersensitivity reaction is sequentially mediated by CD8+ and CD4+ T lymphocytes. Proc. Natl. Acad. Sci. USA 86, 3291–3295 (1989).

    Article  CAS  Google Scholar 

  24. Lowin, B., Mattman, C., Hahne, M. & Tschopp, J. Comparison of Fas(Apo-1/CD95)- and perforin-mediated cytotoxicity in primary T lymphocytes. Int. Immunol. 8, 57–63 (1996).

    Article  CAS  Google Scholar 

  25. Gairin, J.E., Mazarguil, H., Hudrisier, D. & Oldstone, M.B. Optimal lymphocytic choriomeningitis virus sequences restricted by H-2Db major histocompatibility complex class I molecules and presented to cytotoxic T lymphocytes. J. Virol. 69, 2297–2305 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Catalfamo, M. et al. Human CD8+ T cells store RANTES in a unique secretory compartment and release it rapidly after TcR stimulation. Immunity 20, 219–230 (2004).

    Article  CAS  Google Scholar 

  27. Kasai, H. et al. A new quantitative (two-photon extracellular polar-tracer imaging-based quantification (TEPIQ)) analysis for diameters of exocytic vesicles and its application to mouse pancreatic islets. J. Physiol. (Lond.) 568, 891–903 (2005).

    Article  CAS  Google Scholar 

  28. Hurwitz, R., Ferlinz, K. & Sandhoff, K. The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol. Chem. Hoppe Seyler 375, 447–450 (1994).

    Article  CAS  Google Scholar 

  29. Schramm, M., Herz, J., Haas, A., Krönke, M. & Utermöhlen, O. Acid sphingomyelinase is required for efficient phago-lysosomal fusion. Cell. Microbiol. 10, 1839–1853 (2008).

    Article  CAS  Google Scholar 

  30. Raja, S.M. et al. Cytotoxic cell granule-mediated apoptosis. Characterization of the macromolecular complex of granzyme B with serglycin. J. Biol. Chem. 277, 49523–49530 (2002).

    Article  CAS  Google Scholar 

  31. Lopez-Montero, I., Velez, M. & Devaux, P.F. Surface tension induced by sphingomyelin to ceramide conversion in lipid membranes. Biochim. Biophys. Acta 1768, 553–561 (2007).

    Article  CAS  Google Scholar 

  32. Huse, M., Quann, E.J. & Davis, M.M. Shouts, whispers and the kiss of death: directional secretion in T cells. Nat. Immunol. 9, 1105–1111 (2008).

    Article  CAS  Google Scholar 

  33. Tepper, A.D. et al. Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology. J. Cell Biol. 150, 155–164 (2000).

    Article  CAS  Google Scholar 

  34. Horinouchi, K. et al. Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease. Nat. Genet. 10, 288–293 (1995).

    Article  CAS  Google Scholar 

  35. Kägi, D. et al. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369, 31–37 (1994).

    Article  Google Scholar 

  36. Pardo, J., Balkow, S., Anel, A. & Simon, M.M. The differential contribution of granzyme A and granzyme B in cytotoxic T lymphocyte-mediated apoptosis is determined by the quality of target cells. Eur. J. Immunol. 32, 1980–1985 (2002).

    Article  CAS  Google Scholar 

  37. van den Broek, M.F., Kagi, D., Zinkernagel, R.M. & Hengartner, H. Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur. J. Immunol. 25, 3514–3516 (1995).

    Article  CAS  Google Scholar 

  38. Martin, P. et al. Quiescent and activated mouse granulocytes do not express granzyme A and B or perforin: similarities or differences with human polymorphonuclear leukocytes? Blood 106, 2871–2878 (2005).

    Article  CAS  Google Scholar 

  39. Fruth, U. et al. Determination of frequency of T cells expressing the T cell-specific serine proteinase 1 (TSP-1) reveals two types of L3T4+ T lymphocytes. Eur. J. Immunol. 18, 773–781 (1988).

    Article  CAS  Google Scholar 

  40. Rubio, V. et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat. Med. 9, 1377–1382 (2003).

    Article  CAS  Google Scholar 

  41. Vergne, I., Constant, P. & Laneelle, G. Phagosomal pH determination by dual fluorescence flow cytometry. Anal. Biochem. 255, 127–132 (1998).

    Article  CAS  Google Scholar 

  42. Holopainen, J.M., Saarikoski, J., Kinnunen, P.K. & Jarvela, I. Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs). Eur. J. Biochem. 268, 5851–5856 (2001).

    Article  CAS  Google Scholar 

  43. O'Keefe, J.P., Blaine, K., Alegre, M.L. & Gajewski, T.F. Formation of a central supramolecular activation cluster is not required for activation of naive CD8+ T cells. Proc. Natl. Acad. Sci. USA 101, 9351–9356 (2004).

    Article  CAS  Google Scholar 

  44. Fruth, U. et al. The T cell-specific serine proteinase TSP-1 is associated with cytoplasmic granules of cytolytic T lymphocytes. Eur. J. Immunol. 17, 613–621 (1987).

    Article  CAS  Google Scholar 

  45. Schütze, S. & Krönke, M. Measurement of cytokine induction of PC-specific phospholipase C and sphingomyelinases. in Cytokines: A Practical Approach (ed. Balkwill, F.R.) 93–110 (IRL Press at Oxford Univ. Press, Oxford, UK, 1995).

    Google Scholar 

  46. Wiegmann, K., Schütze, S., Machleidt, T., Witte, D. & Krönke, M. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78, 1005–1015 (1994).

    Article  CAS  Google Scholar 

  47. Williams, R.M. & Webb, W.W. Single granule pH cycling in antigen-induced mast cell secretion. J. Cell Sci. 113, 3839–3850 (2000).

    CAS  PubMed  Google Scholar 

  48. Powell, A.D. & Marrion, N.V. Resolution of fusion pore formation in a cell-attached patch. J. Neurosci. Methods 162, 272–281 (2007).

    Article  CAS  Google Scholar 

  49. Sassaroli, M., Vauhkonen, M., Perry, D. & Eisinger, J. Lateral diffusivity of lipid analogue excimeric probes in dimyristoylphosphatidylcholine bilayers. Biophys. J. 57, 281–290 (1990).

    Article  CAS  Google Scholar 

  50. Ollmann, M., Schwarzmann, G., Sandhoff, K. & Galla, H.J. Pyrene-labeled gangliosides: micelle formation in aqueous solution, lateral diffusion, and thermotropic behavior in phosphatidylcholine bilayers. Biochemistry 26, 5943–5952 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Kolesnick (Memorial Sloan-Kettering Cancer Center) and D.R. Green and T. Lin (La Jolla Institute for Allergy and Immunology) for ASMase-KO mice; H. Hengartner (Institute for Experimental Immunology, University Hospital Zürich) for perforin-deficient mice; U. Karow, A. Ekiciler and B. Hub for expert technical assistance; and E.-M. Menke, D. Weßler and J. van de Burgwal for expert work at the animal facility. Supported by the Deutsche Forschungsgemeinschaft (SFB 670 and SPP1110 to O.U. and M.K.), an Alexander von Humboldt foundation fellowship (J.P.), Fundacion Aragon I+D (J.P.) and the Christiane Nüsslein-Volhard Foundation (E.K.).

Author information

Authors and Affiliations

Authors

Contributions

J.H. performed and evaluated experiments and provided the respective probes to the other coauthors. J.P., R.W. and M.M.S. measured activities of perforin and granzymes A and B. H.K. and M.S. performed confocal microscopy. E.K and S.H. performed and evaluated the patch-clamp experiments. E.B. and P.J.P. performed the electron microscopy. K.W. analyzed the lipids and measured ASMase activity. E.S. performed the two-photon microscopy. M.K. and O.U. designed and coordinated the study, performed (O.U.) and evaluated experiments and wrote the manuscript.

Corresponding authors

Correspondence to Martin Krönke or Olaf Utermöhlen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 and Supplementary Table 1 (PDF 1659 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herz, J., Pardo, J., Kashkar, H. et al. Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes. Nat Immunol 10, 761–768 (2009). https://doi.org/10.1038/ni.1757

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1757

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing